Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,73 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
language:
|
5 |
- en
|
6 |
pipeline_tag: text-classification
|
|
|
|
|
7 |
---
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- text-classification
|
6 |
+
- bert
|
7 |
+
- english
|
8 |
+
model-index:
|
9 |
+
- name: BERT Classification
|
10 |
+
results: []
|
11 |
language:
|
12 |
- en
|
13 |
pipeline_tag: text-classification
|
14 |
+
metrics:
|
15 |
+
- accuracy
|
16 |
---
|
17 |
+
|
18 |
+
# BERT Classification
|
19 |
+
|
20 |
+
## Model Overview
|
21 |
+
|
22 |
+
- **Model Name**: BERT Classification
|
23 |
+
- **Model Type**: Text Classification
|
24 |
+
- **Developer**: Mansoor Hamidzadeh
|
25 |
+
- **Framework**: Transformers
|
26 |
+
- **Language**: English
|
27 |
+
- **License**: Apache-2.0
|
28 |
+
|
29 |
+
## Model Description
|
30 |
+
|
31 |
+
This model is a fine-tuned BERT (Bidirectional Encoder Representations from Transformers) designed for text classification tasks. It categorizes text into four labels:
|
32 |
+
|
33 |
+
- **Label 1**: Household
|
34 |
+
- **Label 2**: Books
|
35 |
+
- **Label 3**: Clothing & Accessories
|
36 |
+
- **Label 4**: Electronics
|
37 |
+
|
38 |
+
## Technical Details
|
39 |
+
|
40 |
+
- **Model Size**: 109M parameters
|
41 |
+
- **Tensor Type**: F32
|
42 |
+
- **File Format**: Safetensors
|
43 |
+
|
44 |
+
## How To Use
|
45 |
+
```python
|
46 |
+
# Use a pipeline as a high-level helper
|
47 |
+
from transformers import pipeline
|
48 |
+
|
49 |
+
text=''
|
50 |
+
pipe = pipeline("text-classification", model="mansoorhamidzadeh/bert_classification")
|
51 |
+
pipe(text)
|
52 |
+
|
53 |
+
```
|
54 |
+
## Usage
|
55 |
+
|
56 |
+
The model is useful for categorizing product descriptions or similar text data into predefined labels.
|
57 |
+
|
58 |
+
## Performance
|
59 |
+
|
60 |
+
- **Downloads Last Month**: 4
|
61 |
+
|
62 |
+
## Citation
|
63 |
+
|
64 |
+
If you use this model in your research or applications, please cite it as follows:
|
65 |
+
|
66 |
+
```bibtex
|
67 |
+
@misc{your_name_2024_mt5_en_fa,
|
68 |
+
author = {mansoorhamidzadeh},
|
69 |
+
title = {English to Persian Translation using MT5-Small},
|
70 |
+
year = {2024},
|
71 |
+
publisher = {Hugging Face},
|
72 |
+
howpublished = {\url{https://huggingface.co/mansoorhamidzadeh/mt5_en_fa_translation}},
|
73 |
+
}
|