--- library_name: transformers language: - ko license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mangoo111/eval model-index: - name: test_whisper results: [] --- # test_whisper This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mangoo111/eval dataset. It achieves the following results on the evaluation set: - Loss: 0.0539 - Cer: 2.2521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0266 | 2.8818 | 1000 | 0.0650 | 2.6964 | | 0.0019 | 5.7637 | 2000 | 0.0551 | 2.1164 | | 0.0011 | 8.6455 | 3000 | 0.0539 | 2.2336 | | 0.0008 | 11.5274 | 4000 | 0.0539 | 2.2521 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.3.0a0+6ddf5cf85e.nv24.04 - Datasets 2.17.1 - Tokenizers 0.21.0