LinyingLyu commited on
Commit
ba656c5
·
verified ·
1 Parent(s): 8e78921

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: mit
4
+ language:
5
+ - en
6
+ tags:
7
+ - chronologically consistent
8
+ - modded-nanogpt
9
+ - hellaswag
10
+ pipeline_tag: text-generation
11
+ inference: false
12
+ ---
13
+ # ChronoGPT
14
+
15
+ ## Model Description
16
+
17
+ ChronoGPT is a series **high-performance chronologically consistent large language models (LLMs)** designed to eliminate lookahead bias and training leakage while maintaining good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.
18
+
19
+ All models in the series achieve **HellaSwag benchmark scores that surpass those of the GPT-2 124M model with the same parameter count.** This approach preserves the integrity of historical analysis and enables more reliable economic and financial modeling.
20
+
21
+ - **Developed by:** Songrun He, Linying Lv, Asaf Manela, Jimmy Wu
22
+ - **Model type:** Transformer-based autoregressive decoder (Modified modded-NanoGPT architecture)
23
+ - **Language(s) (NLP):** English
24
+ - **License:** MIT License
25
+
26
+ ## Model Sources
27
+
28
+ - **Paper:** "Chronologically Consistent Large Language Models" (He, Lv, Manela, Wu, 2025)
29
+
30
+ ## How to Get Started with the Model
31
+
32
+ The model is compatible with the `transformers` library starting from v4.48.0:
33
+
34
+ ```sh
35
+ pip install -r requirements.txt
36
+ pip install --pre torch==2.7.0.dev20250110+cu126 --index-url https://download.pytorch.org/whl/nightly/cu126 --upgrade
37
+ ```
38
+
39
+ Here is an example code of using the model:
40
+
41
+ ```python
42
+ from modeling_chronogpt import ChronoGPT
43
+ import tiktoken
44
+
45
+ device = 'cuda:0'
46
+ max_length = 1792
47
+
48
+ tokenizer = tiktoken.get_encoding("gpt2")
49
+ model = ChronoGPT.from_pretrained("LinyingLyu/ChronoGPT", trust_remote_code=True).to(device)
50
+
51
+ text = "Obviously, the time continuum has been disrupted, creating a new temporal event sequence resulting in this alternate reality. -- Dr. Brown, Back to the Future Part II"
52
+
53
+ inputs = torch.tensor(tokenizer.encode(text))[:max_length].reshape(1,-1).to(device)
54
+ logits, emb = model(inputs)
55
+ ```
56
+
57
+ ## Training Details
58
+
59
+ ### Training Data
60
+
61
+ - **Pretraining corpus:** Our initial model chrono-gpt-v1-19991231 is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
62
+ - **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
63
+
64
+ ### Training Procedure
65
+
66
+ - **Architecture:** modded NanoGPT-based model with the Muon optimizer, Skip connections, rotary embeddings and flex attention.
67
+ - **Objective:** Autoregressive text generation.
68
+
69
+ ## Evaluation
70
+
71
+ ### Testing Data, Factors & Metrics
72
+
73
+ - **Language understanding:** Evaluated on **HellaSwag benchmark** tasks.
74
+ - **Financial forecasting:** Evaluated using **return prediction task** based on Dow Jones Newswire data.
75
+ - **Comparison models:** ChronoGPT was benchmarked against **BERT, FinBERT, StoriesLM-v1-1963, and Llama 3.1**.
76
+
77
+ ### Results
78
+
79
+ - **HellaSwag Score:** chrono-gpt-v1-19991231 and chrono-gpt-v1-20241231 achieved HellaSwag score of 0.295 and 0.324 respectively, outperforming GPT-2 (0.294).
80
+ - **Stock return predictions:** During the sample from 2008-01 to 2023-07, chrono-gpt-v1-realtime achieves a long-short portfolio **Sharpe ratio of 4.50**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.
81
+
82
+
83
+ ## Citation
84
+
85
+ ```
86
+ @article{He2025ChronoBERT,
87
+ title={Chronologically Consistent Large Language Models},
88
+ author={He, Songrun and Lv, Linying and Manela, Asaf and Wu, Jimmy},
89
+ journal={Working Paper},
90
+ year={2025}
91
+ }
92
+ ```
93
+
94
+ ## Model Card Authors
95
+
96
+ - Songrun He (Washington University in St. Louis, [email protected])
97
+ - Linying Lv (Washington University in St. Louis, [email protected])
98
+ - Asaf Manela (Washington University in St. Louis, [email protected])
99
+ - Jimmy Wu (Washington University in St. Louis, [email protected])
100
+