File size: 8,257 Bytes
de8b6ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import json
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, List, Tuple
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download

def norm(x):
    return F.rms_norm(x, (x.size(-1),))

class CastedLinear(nn.Linear):
    def __init__(self, in_features, out_features):
        super().__init__(in_features, out_features, bias=False)
    @torch.inference_mode()
    def forward(self, x):
        return F.linear(x, self.weight.type_as(x))

class Rotary(nn.Module):
    def __init__(self, dim, max_seq_len=65536):
        super().__init__()
        angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
        angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
        t = torch.arange(max_seq_len, dtype=torch.float32)
        theta = torch.einsum('i,j -> ij', t, angular_freq)
        self.register_buffer('cos', theta.cos(), persistent=False)
        self.register_buffer('sin', theta.sin(), persistent=False)
    @torch.inference_mode()
    def forward(self, x):
        cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
        x1, x2 = x.float().chunk(2, dim=-1)
        y1 = x1 * cos + x2 * sin
        y2 = x1 * (-sin) + x2 * cos
        return torch.cat((y1, y2), 3).type_as(x)

class CausalSelfAttention(nn.Module):
    def __init__(self, dim, num_heads):
        super().__init__()
        assert dim % num_heads == 0
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.c_q = CastedLinear(dim, dim)
        self.c_k = CastedLinear(dim, dim)
        self.c_v = CastedLinear(dim, dim)
        self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
        self.rotary = Rotary(self.head_dim)
        self.c_proj = CastedLinear(dim, dim)
        self.register_buffer('kv_cache', None, persistent=False)
    @torch.inference_mode()
    def forward(self, x, ve):
        B, T = x.size(0), x.size(1)
        q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
        k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
        v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
        if ve is not None:
            v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
        else:
            v = self.lambdas[0] * v
        q, k = norm(q), norm(k)
        q, k = self.rotary(q), self.rotary(k)
        if self.kv_cache is not None:
            k = torch.cat([self.kv_cache[0], k], dim=1)
            v = torch.cat([self.kv_cache[1], v], dim=1)
            self.kv_cache = torch.stack([k, v])
        if hasattr(F, 'scaled_dot_product_attention'):
            y = F.scaled_dot_product_attention(
                q.transpose(1, 2),
                k.transpose(1, 2),
                v.transpose(1, 2),
                is_causal=True
            )
        else:
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
            att = att.masked_fill(
                torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
                float('-inf')
            )
            att = F.softmax(att, dim=-1)
            y = att @ v
        y = y.transpose(1, 2).contiguous().view(B, T, -1)
        y = self.c_proj(y)
        return y

class MLP(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.c_fc = CastedLinear(dim, 4 * dim)
        self.c_proj = CastedLinear(4 * dim, dim)
        self.c_proj.weight.data.zero_()
    @torch.inference_mode()
    def forward(self, x):
        x = self.c_fc(x)
        x = F.relu(x).square()
        x = self.c_proj(x)
        return x

class Block(nn.Module):
    def __init__(self, model_dim, num_heads, use_attn=True):
        super().__init__()
        self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
        self.mlp = MLP(model_dim)
        self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
    @torch.inference_mode()
    def forward(self, x, ve, x0):
        x = self.lambdas[0] * x + self.lambdas[1] * x0
        if self.attn is not None:
            x = x + self.attn(norm(x), ve)
        x = x + self.mlp(norm(x))
        return x

class ValueEmbedding(nn.Module):
    def __init__(self, vocab_size, model_dim):
        super().__init__()
        self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
    @torch.inference_mode()
    def forward(self, inputs):
        ve = [emb(inputs).bfloat16() for emb in self.embed]
        ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
        return ve

class ChronoGPT(nn.Module, PyTorchModelHubMixin):
    def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
        super().__init__()
        # Removed undefined "device" reference
        self.num_heads = num_heads
        self.vocab_size = vocab_size
        self.embed = nn.Embedding(vocab_size, model_dim)
        self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7))
                                     for i in range(num_layers)])
        self.value_embeds = ValueEmbedding(vocab_size, model_dim)
        self.lm_head = CastedLinear(model_dim, vocab_size)
        self.lm_head.weight.data.zero_()
        self.num_encoder_layers = num_layers // 2
        self.num_decoder_layers = num_layers - self.num_encoder_layers
        self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
    @torch.inference_mode()
    def forward(self, inputs, past_key_values=None):
        B = inputs.size(0)
        if inputs.dim() == 1:
            inputs = inputs.unsqueeze(0)
        layer_outputs = []
        x0 = norm(self.embed(inputs).bfloat16())
        x = x0
        layer_outputs.append(norm(x))
        ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
        ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None 
              for i in range(len(ve[0]))]
        ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
        if past_key_values is not None:
            for i, block in enumerate(self.blocks):
                if block.attn is not None:
                    block.attn.kv_cache = past_key_values[i]
        present = []
        skip_connections = []
        for i in range(self.num_encoder_layers):
            block = self.blocks[i]
            x = block(x, ve_enc[i], x0)
            if block.attn is not None:
                present.append(block.attn.kv_cache)
                block.attn.kv_cache = None
            skip_connections.append(x)
            layer_outputs.append(norm(x))
        for i in range(self.num_decoder_layers):
            x = x + self.skip_weights[i] * skip_connections.pop()
            block = self.blocks[self.num_encoder_layers + i]
            x = block(x, ve_dec[i], x0)
            layer_outputs.append(norm(x))
            if block.attn is not None:
                present.append(block.attn.kv_cache)
                block.attn.kv_cache = None
        x = norm(x)
        logits = self.lm_head(x)
        logits = 15 * torch.tanh(logits / 15)
        return logits.float(), layer_outputs
    def save_pretrained(self, save_directory, **kwargs):
        os.makedirs(save_directory, exist_ok=True)
        torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
        config = {
            "model_type": "ChronoGPT",
            "vocab_size": self.embed.num_embeddings,
            "num_layers": len(self.blocks),
            "num_heads": self.num_heads,
            "model_dim": self.embed.embedding_dim
        }
        torch.save(config, os.path.join(save_directory, "config.pt"))
        with open(os.path.join(save_directory, "config.json"), "w") as f:
            json.dump(config, f)
    @classmethod
    def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
        config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
        bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
        config = torch.load(config_path)
        model = cls(**config)
        model.load_state_dict(torch.load(bin_path))
        return model