File size: 9,437 Bytes
315a894 9a02f96 315a894 9a02f96 315a894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import json
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, List, Tuple
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
@torch.inference_mode()
def forward(self, x):
return F.linear(x, self.weight.type_as(x))
class Rotary(nn.Module):
def __init__(self, dim, max_seq_len=65536):
super().__init__()
angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
t = torch.arange(max_seq_len, dtype=torch.float32)
theta = torch.einsum('i,j -> ij', t, angular_freq)
self.register_buffer('cos', theta.cos(), persistent=False)
self.register_buffer('sin', theta.sin(), persistent=False)
@torch.inference_mode()
def forward(self, x):
cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
x1, x2 = x.float().chunk(2, dim=-1)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, num_heads):
super().__init__()
assert dim % num_heads == 0
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
self.rotary = Rotary(self.head_dim)
self.c_proj = CastedLinear(dim, dim)
self.register_buffer('kv_cache', None, persistent=False)
@torch.inference_mode()
def forward(self, x, ve):
B, T = x.size(0), x.size(1)
# Generate Q, K, V
q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
if ve is not None:
v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
else:
v = self.lambdas[0] * v
q, k = norm(q), norm(k)
q, k = self.rotary(q), self.rotary(k)
# Use KV cache if available
if self.kv_cache is not None:
k = torch.cat([self.kv_cache[0], k], dim=1)
v = torch.cat([self.kv_cache[1], v], dim=1)
self.kv_cache = torch.stack([k, v])
# Efficient attention with flash attention if available
if hasattr(F, 'scaled_dot_product_attention'):
y = F.scaled_dot_product_attention(
q.transpose(1, 2), # (B, num_heads, T, head_dim)
k.transpose(1, 2), # (B, num_heads, T, head_dim)
v.transpose(1, 2), # (B, num_heads, T, head_dim)
is_causal=True
)
else:
# Fallback to regular attention
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
att = att.masked_fill(
torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
float('-inf')
)
att = F.softmax(att, dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, -1)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_()
@torch.inference_mode()
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square()
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, model_dim, num_heads, use_attn=True):
super().__init__()
self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
self.mlp = MLP(model_dim)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
@torch.inference_mode()
def forward(self, x, ve, x0):
x = self.lambdas[0] * x + self.lambdas[1] * x0
if self.attn is not None:
x = x + self.attn(norm(x), ve)
x = x + self.mlp(norm(x))
return x
class ValueEmbedding(nn.Module):
def __init__(self, vocab_size, model_dim, num_layers=52):
super().__init__()
self.num_layers = num_layers
# We only have 3 distinct embedding modules, reused at beginning and end.
self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
def forward(self, inputs):
# Compute the base embeddings (a list of length 3)
base = [emb(inputs).bfloat16() for emb in self.embed]
L = self.num_layers
half = L // 2 # number of encoder layers (assumes num_layers is even)
# Build encoder: first 3 layers get embeddings, rest get None.
encoder = [base[i] if i < 3 else None for i in range(half)]
# Build decoder: last 3 layers get embeddings, others get None.
# For decoder layers, if i is in [half-3, half-1] then assign base[0], base[1], base[2]
decoder = [base[i - (half - 3)] if i >= (half - 3) else None for i in range(half)]
return encoder + decoder
class ChronoGPT(nn.Module, PyTorchModelHubMixin):
def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
super().__init__()
self.num_heads = num_heads
self.vocab_size = vocab_size # Store vocab_size as instance variable
self.embed = nn.Embedding(vocab_size, model_dim)
self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=True) for i in range(num_layers)])
self.value_embeds = ValueEmbedding(vocab_size, model_dim, num_layers=num_layers)
self.lm_head = CastedLinear(model_dim, vocab_size)
self.lm_head.weight.data.zero_()
self.num_encoder_layers = num_layers // 2
self.num_decoder_layers = num_layers - self.num_encoder_layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
@torch.inference_mode()
def forward(self, inputs, past_key_values=None):
# Remove fixed batch size assumption
B = inputs.size(0) # Get batch size from input tensor
if inputs.dim() == 1:
inputs = inputs.unsqueeze(0) # Add batch dimension if not present
x0 = norm(self.embed(inputs).bfloat16())
x = x0
# Modify value embedding handling for batched input
ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
for i in range(len(ve[0]))]
ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
# Handle cached states for batched input
if past_key_values is not None:
for i, block in enumerate(self.blocks):
if block.attn is not None:
block.attn.kv_cache = past_key_values[i]
present = []
layer_outputs = []
skip_connections = []
# Process through encoder layers
for i in range(self.num_encoder_layers):
block = self.blocks[i]
x = block(x, ve_enc[i], x0)
if block.attn is not None:
present.append(block.attn.kv_cache)
block.attn.kv_cache = None
skip_connections.append(x)
layer_outputs.append(norm(x))
# Process through decoder layers
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
block = self.blocks[self.num_encoder_layers + i]
x = block(x, ve_dec[i], x0)
layer_outputs.append(norm(x))
if block.attn is not None:
present.append(block.attn.kv_cache)
block.attn.kv_cache = None
x = norm(x)
logits = self.lm_head(x)
logits = 15 * torch.tanh(logits / 15)
return logits.float(), layer_outputs
def save_pretrained(self, save_directory, **kwargs):
os.makedirs(save_directory, exist_ok=True)
torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
config = {
"model_type": "ChronoGPT",
"vocab_size": self.embed.num_embeddings,
"num_layers": len(self.blocks),
"num_heads": self.num_heads,
"model_dim": self.embed.embedding_dim
}
torch.save(config, os.path.join(save_directory, "config.pt"))
with open(os.path.join(save_directory, "config.json"), "w") as f:
json.dump(config, f)
@classmethod
def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
config = torch.load(config_path)
model = cls(**config)
model.load_state_dict(torch.load(bin_path))
return model |