songrunhe commited on
Commit
530dd97
·
verified ·
1 Parent(s): deda865

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -32,8 +32,8 @@ All models in the series achieve **GLUE benchmark scores that surpass standard B
32
  ```python
33
  from transformers import AutoTokenizer, AutoModel
34
 
35
- tokenizer = AutoTokenizer.from_pretrained("manelalab/chronobert-v1-19991231")
36
- model = AutoModel.from_pretrained("manelalab/chronobert-v1-19991231")
37
 
38
  text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
39
 
@@ -45,7 +45,7 @@ outputs = model(**inputs)
45
 
46
  ### Training Data
47
 
48
- - **Pretraining corpus:** Our initial model $\text{ChronoBERT}_{1999}$ is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
49
  - **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
50
 
51
  ### Training Procedure
@@ -63,8 +63,8 @@ outputs = model(**inputs)
63
 
64
  ### Results
65
 
66
- - **GLUE Score:** $\text{ChronoBERT}_{1999}$ and $\text{ChronoBERT}_{2024}$ achieved GLUE score of 84.71 and 85.54 respectively, outperforming BERT (84.52).
67
- - **Stock return predictions:** During the sample from 2008-01 to 2023-07, $\text{ChronoBERT}_{\text{Realtime}}$ achieves a long-short portfolio **Sharpe ratio of 4.80**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.
68
 
69
 
70
  ## Citation
 
32
  ```python
33
  from transformers import AutoTokenizer, AutoModel
34
 
35
+ tokenizer = AutoTokenizer.from_pretrained("manelalab/chrono-bert-v1-19991231")
36
+ model = AutoModel.from_pretrained("manelalab/chrono-bert-v1-19991231")
37
 
38
  text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
39
 
 
45
 
46
  ### Training Data
47
 
48
+ - **Pretraining corpus:** Our initial model chrono-bert-v1-19991231 is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
49
  - **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
50
 
51
  ### Training Procedure
 
63
 
64
  ### Results
65
 
66
+ - **GLUE Score:** chrono-bert-v1-19991231 and chrono-bert-v1-20241231 achieved GLUE score of 84.71 and 85.54 respectively, outperforming BERT (84.52).
67
+ - **Stock return predictions:** During the sample from 2008-01 to 2023-07, chrono-bert-v1-realtime achieves a long-short portfolio **Sharpe ratio of 4.80**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.
68
 
69
 
70
  ## Citation