File size: 3,625 Bytes
d4758da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69181e4
 
 
 
 
 
 
 
 
 
d4758da
69181e4
 
 
 
 
dfaf6f4
 
 
 
 
 
 
 
 
69181e4
 
dfaf6f4
69181e4
4dbe6be
dfaf6f4
69181e4
ef4fd12
69181e4
dfaf6f4
69181e4
 
 
 
 
 
 
4dbe6be
69181e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbe6be
 
69181e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
library_name: transformers
license: mit
language:
- en
tags:
- chronologically consistent
- modernbert
- glue
pipeline_tag: fill-mask
inference: false
---
# ChronoBERT

## Model Description

ChronoBERT is a series **high-performance chronologically consistent large language models (LLM)** designed to eliminate lookahead bias and training leakage while maintain good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.

All models in the series achieve **GLUE benchmark scores that surpass standard BERT.** This approach preserves the integrity of historical analysis and enables more reliable economic and financial modeling.

- **Developed by:** Songrun He, Linying Lv, Asaf Manela, Jimmy Wu
- **Model type:** Transformer-based bidirectional encoder (ModernBERT architecture)
- **Language(s) (NLP):** English
- **License:** MIT License

## Model Sources

- **Paper:** "Chronologically Consistent Large Language Models" (He, Lv, Manela, Wu, 2025)

## How to Get Started with the Model

The model is compatible with the `transformers` library starting from v4.48.0:

```sh
pip install -U transformers>=4.48.0
pip install flash-attn
```

Here is an example code of using the model:

```python
from transformers import AutoTokenizer, AutoModel
device = 'cuda:0'

tokenizer = AutoTokenizer.from_pretrained("manelalab/chrono-bert-v1-19991231")
model = AutoModel.from_pretrained("manelalab/chrono-bert-v1-19991231").to(device)

text = "Obviously, the time continuum has been disrupted, creating a new temporal event sequence resulting in this alternate reality. -- Dr. Brown, Back to the Future Part II"

inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model(**inputs)
```

## Training Details

### Training Data

- **Pretraining corpus:** Our initial model chrono-bert-v1-19991231 is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
- **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.

### Training Procedure

- **Architecture:** ModernBERT-based model with rotary embeddings and flash attention.
- **Objective:** Masked token prediction.

## Evaluation

### Testing Data, Factors & Metrics

- **Language understanding:** Evaluated on **GLUE benchmark** tasks.
- **Financial forecasting:** Evaluated using **return prediction task** based on Dow Jones Newswire data.
- **Comparison models:** ChronoBERT was benchmarked against **BERT, FinBERT, StoriesLM-v1-1963, and Llama 3.1**.

### Results

- **GLUE Score:** chrono-bert-v1-19991231 and chrono-bert-v1-20241231 achieved GLUE score of 84.71 and 85.54 respectively, outperforming BERT (84.52).
- **Stock return predictions:** During the sample from 2008-01 to 2023-07, chrono-bert-v1-realtime achieves a long-short portfolio **Sharpe ratio of 4.80**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.


## Citation

```
@article{He2025ChronoBERT,
  title={Chronologically Consistent Large Language Models},
  author={He, Songrun and Lv, Linying and Manela, Asaf and Wu, Jimmy},
  journal={Working Paper},
  year={2025}
}
```

## Model Card Authors

- Songrun He (Washington University in St. Louis, [email protected])
- Linying Lv (Washington University in St. Louis, [email protected])
- Asaf Manela (Washington University in St. Louis, [email protected])
- Jimmy Wu (Washington University in St. Louis, [email protected])