songrunhe commited on
Commit
29dad41
·
verified ·
1 Parent(s): d8bdc6c

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card for ChronoBERT
2
+
3
+ ## Model Details
4
+
5
+ ### Model Description
6
+
7
+ ChronoBERT is a series **high-performance chronologically consistent large language models (LLM)** designed to eliminate lookahead bias and training leakage while maintain good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.
8
+
9
+ All models in the series achieve **GLUE benchmark scores that surpass standard BERT.** This approach preserves the integrity of historical analysis and enables more reliable economic and financial modeling.
10
+
11
+ - **Developed by:** Songrun He, Linying Lv, Asaf Manela, Jimmy Wu
12
+ - **Model type:** Transformer-based bidirectional encoder (ModernBERT architecture)
13
+ - **Language(s) (NLP):** English
14
+ - **License:** MIT License
15
+
16
+ ### Model Sources
17
+
18
+ - **Paper:** "Chronologically Consistent Large Language Models" (He, Lv, Manela, Wu, 2025)
19
+
20
+ ## How to Get Started with the Model
21
+
22
+ ```python
23
+ from transformers import AutoTokenizer, AutoModel
24
+
25
+ tokenizer = AutoTokenizer.from_pretrained("manelalab/chronobert-v1-19991231")
26
+ model = AutoModel.from_pretrained("manelalab/chronobert-v1-19991231")
27
+
28
+ text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
29
+
30
+ inputs = tokenizer(text, return_tensors="pt")
31
+ outputs = model(**inputs)
32
+ ```
33
+
34
+ ## Training Details
35
+
36
+ ### Training Data
37
+
38
+ - **Pretraining corpus:** Our initial model $\text{ChronoBERT}_{1999}$ is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
39
+ - **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
40
+
41
+ ### Training Procedure
42
+
43
+ - **Architecture:** ModernBERT-based model with rotary embeddings and flash attention.
44
+ - **Objective:** Masked token prediction.
45
+
46
+ ## Evaluation
47
+
48
+ ### Testing Data, Factors & Metrics
49
+
50
+ - **Language understanding:** Evaluated on **GLUE benchmark** tasks.
51
+ - **Financial forecasting:** Evaluated using **return prediction task** based on Dow Jones Newswire data.
52
+ - **Comparison models:** ChronoBERT was benchmarked against **BERT, FinBERT, StoriesLM-v1-1963, and Llama 3.1**.
53
+
54
+ ### Results
55
+
56
+ - **GLUE Score:** $\text{ChronoBERT}_{1999}$ and $\text{ChronoBERT}_{2024}$ achieved GLUE score of 84.71 and 85.54 respectively, outperforming BERT (84.52).
57
+ - **Stock return predictions:** During the sample from 2008-01 to 2023-07, $\text{ChronoBERT}_{\text{Realtime}}$ achieves a long-short portfolio **Sharpe ratio of 4.80**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.
58
+
59
+
60
+ ## Citation
61
+
62
+ ```
63
+ @article{He2025ChronoBERT,
64
+ title={Chronologically Consistent Large Language Models},
65
+ author={He, Songrun and Lv, Linying and Manela, Asaf and Wu, Jimmy},
66
+ journal={Working Paper},
67
+ year={2025}
68
+ }
69
+ ```
70
+
71
+ ## Model Card Authors
72
+
73
+ - Songrun He (Washington University in St. Louis, [email protected])
74
+ - Linying Lv (Washington University in St. Louis, [email protected])
75
+ - Asaf Manela (Washington University in St. Louis, [email protected])
76
+ - Jimmy Wu (Washington University in St. Louis, [email protected])
77
+
78
+
79
+