Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
An Arabic abstractive text summarization model.
|
2 |
-
A fine-tuned AraT5 model on a dataset that consists of
|
3 |
|
4 |
More details on the fine-tuning of this model will be released later.
|
5 |
|
@@ -9,13 +9,15 @@ from arabert.preprocess import ArabertPreprocessor
|
|
9 |
|
10 |
model_name="malmarjeh/t5-arabic-text-summarization"
|
11 |
arabert_prep = ArabertPreprocessor(model_name=model_name)
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
14 |
pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
|
15 |
|
16 |
-
text = "
|
17 |
preprocessor = ArabertPreprocessor(model_name="")
|
18 |
preprocessor.preprocess(text)
|
|
|
19 |
result = pipeline(text,
|
20 |
pad_token_id=tokenizer.eos_token_id,
|
21 |
num_beams=3,
|
@@ -24,5 +26,4 @@ result = pipeline(text,
|
|
24 |
length_penalty=1.0,
|
25 |
no_repeat_ngram_size = 3)[0]['generated_text']
|
26 |
result
|
27 |
-
>>>"و+ لن نبالغ إذا قل +نا إن هاتف أو كمبيوتر ال+ مكتب في زمن +نا هذا ضروري"
|
28 |
```
|
|
|
1 |
An Arabic abstractive text summarization model.
|
2 |
+
A fine-tuned AraT5 model on a dataset that consists of 84,764 paragraph-summary pairs.
|
3 |
|
4 |
More details on the fine-tuning of this model will be released later.
|
5 |
|
|
|
9 |
|
10 |
model_name="malmarjeh/t5-arabic-text-summarization"
|
11 |
arabert_prep = ArabertPreprocessor(model_name=model_name)
|
12 |
+
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
15 |
pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
|
16 |
|
17 |
+
text = "شهدت مدينة طرابلس، مساء أمس الأربعاء، احتجاجات شعبية وأعمال شغب لليوم الثالث على التوالي، وذلك بسبب تردي الوضع المعيشي والاقتصادي. واندلعت مواجهات عنيفة وعمليات كر وفر ما بين الجيش اللبناني والمحتجين استمرت لساعات، إثر محاولة فتح الطرقات المقطوعة، ما أدى إلى إصابة العشرات من الطرفين."
|
18 |
preprocessor = ArabertPreprocessor(model_name="")
|
19 |
preprocessor.preprocess(text)
|
20 |
+
|
21 |
result = pipeline(text,
|
22 |
pad_token_id=tokenizer.eos_token_id,
|
23 |
num_beams=3,
|
|
|
26 |
length_penalty=1.0,
|
27 |
no_repeat_ngram_size = 3)[0]['generated_text']
|
28 |
result
|
|
|
29 |
```
|