Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- yahma/alpaca-cleaned
|
4 |
+
---
|
5 |
+
---
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
datasets:
|
9 |
+
|
10 |
+
license: cc-by-nc-4.0
|
11 |
+
---
|
12 |
+
|
13 |
+
# Platypus2-70B-instruct-4bit-gptq
|
14 |
+
|
15 |
+
Platypus2-70B-instruct-4bit-gptq is a qunatnized version of [`garage-bAInd/Platypus2-70B-instruct`](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct) using GPTQ Quantnization
|
16 |
+
|
17 |
+
### Benchmark Metrics
|
18 |
+
|
19 |
+
will report soon
|
20 |
+
|
21 |
+
### Model Details
|
22 |
+
|
23 |
+
* **Trained by**: **Platypus2-70B-instruct-4bit-gptq** quantnized by Mohamad [email protected] ;
|
24 |
+
* **Model type:** **Platypus2-70B-instruct-4bit-gptq** is a quantnized version of Platypus2-70B-instruct using 4bit quantnization
|
25 |
+
* **Language(s)**: English
|
26 |
+
* **License**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
|
27 |
+
|
28 |
+
### Prompt Template
|
29 |
+
```
|
30 |
+
### Instruction:
|
31 |
+
|
32 |
+
<prompt> (without the <>)
|
33 |
+
|
34 |
+
### Response:
|
35 |
+
```
|
36 |
+
|
37 |
+
### Training Dataset
|
38 |
+
|
39 |
+
`Platypus2-70B-instruct-4bit-gptq` quantnized using gptq on Alpaca dataset [`yahma/alpaca-cleaned`](https://huggingface.co/datasets/yahma/alpaca-cleaned).
|
40 |
+
|
41 |
+
### Training Procedure
|
42 |
+
|
43 |
+
`garage-bAInd/Platypus2-70B` was instruction fine-tuned using gptq on 2 L40 48GB.
|
44 |
+
|
45 |
+
|
46 |
+
### Citations
|
47 |
+
```bibtex
|
48 |
+
@article{platypus2023,
|
49 |
+
title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
|
50 |
+
author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
|
51 |
+
booktitle={arXiv preprint arxiv:2308.07317},
|
52 |
+
year={2023}
|
53 |
+
}
|
54 |
+
```
|
55 |
+
```bibtex
|
56 |
+
@misc{touvron2023llama,
|
57 |
+
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
|
58 |
+
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov year={2023},
|
59 |
+
eprint={2307.09288},
|
60 |
+
archivePrefix={arXiv},
|
61 |
+
}
|
62 |
+
```
|
63 |
+
```bibtex
|
64 |
+
@misc{frantar2023gptq,
|
65 |
+
title={GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers},
|
66 |
+
author={Elias Frantar and Saleh Ashkboos and Torsten Hoefler and Dan Alistarh},
|
67 |
+
year={2023},
|
68 |
+
eprint={2210.17323},
|
69 |
+
archivePrefix={arXiv},
|
70 |
+
primaryClass={cs.LG}
|
71 |
+
}
|
72 |
+
```
|