File size: 1,945 Bytes
d8d71d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: bsd-3-clause
base_model: Salesforce/blip-image-captioning-base
tags:
- generated_from_trainer
model-index:
- name: blip-finetuned-kag100
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# blip-finetuned-kag100

This model is a fine-tuned version of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8447

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.379         | 1.1130 | 50   | 1.3287          |
| 1.0477        | 2.2260 | 100  | 1.0919          |
| 0.8732        | 3.3390 | 150  | 0.9758          |
| 0.796         | 4.4520 | 200  | 0.9150          |
| 0.732         | 5.5650 | 250  | 0.9030          |
| 0.7011        | 6.6780 | 300  | 0.8376          |
| 0.6761        | 7.7910 | 350  | 0.8530          |
| 0.663         | 8.9040 | 400  | 0.8447          |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0