import yaml from PIL import Image from data.base_dataset import BaseDataset class SemanticKITTI(BaseDataset): def __init__(self, path_list, config_file = "./dataset/SemanticKitti/semantickitti.yaml.yaml", transform = None, data_set = 'val', seed=None, img_size=768, interpolation=Image.BILINEAR, color_pallete = 'city'): super().__init__(path_list, transform, data_set, seed, img_size, interpolation, color_pallete) with open(config_file, 'r') as stream: cityyaml = yaml.safe_load(stream) self.learning_map = cityyaml['learning_map'] self.masks = [ path.replace("/training/image_02", "/kitti-step/panoptic_maps/"+data_set) for path in self.imgs ] def convert_label(self, label, inverse=False): label = label [0,:,:] temp = label.copy()*255 for k, v in self.learning_map.items(): label[temp== k] = v return label