final upload
Browse files- validation.ipynb +3 -3
validation.ipynb
CHANGED
@@ -69,7 +69,7 @@
|
|
69 |
"import torch.backends.cudnn as cudnn\n",
|
70 |
"import torchvision.transforms as transforms\n",
|
71 |
"\n",
|
72 |
-
"from data import cityscapes\n",
|
73 |
"import util.misc as misc\n",
|
74 |
"\n",
|
75 |
"from models.vae import AutoencoderKL\n",
|
@@ -148,7 +148,7 @@
|
|
148 |
},
|
149 |
{
|
150 |
"cell_type": "code",
|
151 |
-
"execution_count":
|
152 |
"id": "28d13453-a3ac-4d2e-8906-0c179e85c2f9",
|
153 |
"metadata": {
|
154 |
"tags": []
|
@@ -161,9 +161,9 @@
|
|
161 |
"])\n",
|
162 |
"\n",
|
163 |
"dataset_train = cityscapes.CityScapes('dataset/CityScapes/vallist.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
164 |
-
"# dataset_train = umbc.UMBC('dataset/UMBC/all.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
165 |
"# dataset_train = acdc.ACDC('dataset/ACDC/vallist_fog.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
166 |
"# dataset_train = semantickitti.SemanticKITTI('dataset/SemanticKitti/vallist.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
|
|
167 |
"\n",
|
168 |
"\n",
|
169 |
"sampler_train = torch.utils.data.DistributedSampler(dataset_train, num_replicas=1, rank=0, shuffle=False)\n",
|
|
|
69 |
"import torch.backends.cudnn as cudnn\n",
|
70 |
"import torchvision.transforms as transforms\n",
|
71 |
"\n",
|
72 |
+
"from data import cityscapes, acdc, semantickitti, cadedgetune\n",
|
73 |
"import util.misc as misc\n",
|
74 |
"\n",
|
75 |
"from models.vae import AutoencoderKL\n",
|
|
|
148 |
},
|
149 |
{
|
150 |
"cell_type": "code",
|
151 |
+
"execution_count": 9,
|
152 |
"id": "28d13453-a3ac-4d2e-8906-0c179e85c2f9",
|
153 |
"metadata": {
|
154 |
"tags": []
|
|
|
161 |
"])\n",
|
162 |
"\n",
|
163 |
"dataset_train = cityscapes.CityScapes('dataset/CityScapes/vallist.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
|
|
164 |
"# dataset_train = acdc.ACDC('dataset/ACDC/vallist_fog.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
165 |
"# dataset_train = semantickitti.SemanticKITTI('dataset/SemanticKitti/vallist.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
166 |
+
"# dataset_train = cadedgetune.CADEdgeTune('dataset/CADEdgeTune/all.txt', data_set= 'val', transform=transform_train, seed=args.seed, img_size=args.img_size)\n",
|
167 |
"\n",
|
168 |
"\n",
|
169 |
"sampler_train = torch.utils.data.DistributedSampler(dataset_train, num_replicas=1, rank=0, shuffle=False)\n",
|