CAM-Seg / data /base_dataset.py
mahmed10's picture
final upload
e8f2edc verified
import os
import random
import time
import numpy as np
import torch
from PIL import Image
import cv2
from torchvision import transforms, datasets
from torchvision.transforms import functional as F
def _getvocpallete(num_colors):
return [0, 0, 0] * num_colors
# ----------------------
# Augmentation Classes
# ----------------------
class Rotate:
def __init__(self, angle):
self.angle = random.randint(-angle, angle)
def __call__(self, img):
return F.rotate(img, angle=self.angle)
class Shear:
def __init__(self, shear=10, scale=(1.0, 1.0)):
self.shear = random.uniform(-shear, shear)
self.scale = random.uniform(scale[0], scale[1])
def __call__(self, img):
return F.affine(img, angle=0, translate=(0, 0), scale=self.scale, shear=[self.shear, self.shear])
class Skew:
def __init__(self, magnitude=0.2):
self.xshift = random.uniform(-magnitude, magnitude)
self.yshift = random.uniform(-magnitude, magnitude)
def __call__(self, img):
width, height = img.size
x_shift = int(self.xshift * width)
y_shift = int(self.yshift * height)
return img.transform(img.size, Image.AFFINE, (1, 0, x_shift, 0, 1, y_shift))
class Crop:
def __init__(self, min_crop=0.8, max_crop=0.9):
self.crop_scale = random.uniform(min_crop, max_crop)
self.seed = time.time()
def __call__(self, img):
width, height = img.size
crop_width = int(self.crop_scale * width)
crop_height = int(self.crop_scale * height)
random.seed(self.seed)
left = random.randint(0, width - crop_width)
top = random.randint(0, height - crop_height)
return F.crop(img, top, left, crop_height, crop_width).resize((width, height))
class GaussianNoise:
def __init__(self, mean=0, std=(10,20)):
self.mean = mean
self.std = random.uniform(std[0], std[1])
def __call__(self, img):
img = np.array(img)
noise = np.random.normal(self.mean, self.std, img.shape)
img = img + noise
img = np.clip(img, 0, 255).astype(np.uint8)
return Image.fromarray(img)
class SaltAndPepperNoise:
def __init__(self, min_prob=0.01, max_prob=0.05):
self.salt_prob = random.uniform(min_prob, max_prob)
self.pepper_prob = random.uniform(min_prob, max_prob)
def __call__(self, img):
img_array = np.array(img)
salt_mask = np.random.rand(*img_array.shape[:2]) < self.salt_prob
pepper_mask = np.random.rand(*img_array.shape[:2]) < self.pepper_prob
img_array[salt_mask] = 255
img_array[pepper_mask] = 0
return Image.fromarray(img_array.astype(np.uint8))
class MotionBlur:
def __init__(self, min_size=3, max_size=21):
self.kernel_size = random.randint(min_size, max_size)
def __call__(self, img):
img_array = np.array(img)
kernel = np.zeros((self.kernel_size, self.kernel_size))
kernel[int((self.kernel_size - 1) / 2), :] = np.ones(self.kernel_size)
kernel = kernel / self.kernel_size
blurred = cv2.filter2D(img_array, -1, kernel)
return Image.fromarray(blurred.astype(np.uint8))
class HideAndSeekNoise:
def __init__(self, min_size=90, max_size=190):
self.patch_size = random.randint(min_size, max_size)
self.seed = time.time()
def __call__(self, img):
img_array = np.array(img)
height, width, _ = img_array.shape
random.seed(self.seed)
top = random.randint(0, height - self.patch_size)
left = random.randint(0, width - self.patch_size)
img_array[top:top + self.patch_size, left:left + self.patch_size] = [0, 0, 0]
return Image.fromarray(img_array)
class BaseDataset(torch.utils.data.Dataset):
def __init__(self, path_list, transform = None, data_set = 'val', seed=None,
img_size=768, interpolation=Image.BILINEAR, color_pallete = 'city'):
"""
:param path_list: Path to file listing image paths.
:param transform: Additional torchvision transforms.
:param data_set: 'train' or other mode.
:param seed: Seed for shuffling.
:param img_size: Resize dimensions.
:param interpolation: Interpolation method for resizing.
"""
self.transform = transform
self.data_set = data_set
self.color_pallete = color_pallete
with open(path_list, "r") as file:
self.imgs = file.readlines()
if seed:
random.seed(seed)
random.shuffle(self.imgs)
self.masks = [img_path for img_path in self.imgs]
self.learning_map = None
self.aug_weights = [0.4, 0.3, 0.3, 0.2, 0.2, 0.05, 0.05, 0.02, 0.02]
if img_size:
self.transform_resize = transforms.Resize((img_size, img_size), interpolation=Image.BILINEAR)
def convert_label(self, label, inverse=False):
temp = label.copy()
converted_label = np.zeros_like(label)
for k, v in self.learning_map.items():
converted_label[temp == k] = v
return converted_label
def get_color_pallete(self, npimg, dataset='city'):
out_img = Image.fromarray(npimg.astype('uint8')).convert('P')
if dataset == 'city':
cityspallete = [
0, 0, 0,
128, 64, 128,
244, 35, 232,
70, 70, 70,
102, 102, 156,
190, 153, 153,
153, 153, 153,
250, 170, 30,
220, 220, 0,
107, 142, 35,
152, 251, 152,
0, 130, 180,
220, 20, 60,
255, 0, 0,
0, 0, 142,
0, 0, 70,
0, 60, 100,
0, 80, 100,
0, 0, 230,
119, 11, 32,
]
out_img.putpalette(cityspallete)
else:
vocpallete = _getvocpallete(256)
out_img.putpalette(vocpallete)
return out_img.convert("RGB")
def __getitem__(self, index):
img_path, mask_path = self.imgs[index].rstrip(), self.masks[index].rstrip()
# Load and resize the image
img = Image.open(img_path).convert('RGB')
img = self.transform_resize(img)
# Load, convert, and resize the mask
mask = Image.open(mask_path)
mask = np.array(mask)
mask = self.convert_label(mask)
mask = mask.astype(np.uint8)
mask = self.get_color_pallete(mask, self.color_pallete)
mask = self.transform_resize(mask)
# Augmentation stage
augmentation_num = random.choices(range(9), weights=self.aug_weights, k=1)[0] if self.data_set == 'train' else 0
if augmentation_num > 0:
augmentation_set = [
transforms.RandomHorizontalFlip(p=1), # Flip horizontally
transforms.RandomVerticalFlip(p=1), # Flip vertically
Crop(min_crop=0.6, max_crop=0.9), # Random crop
Rotate(angle=90), # Rotate
Shear(shear=10, scale=(0.8, 1.2)), # Shear
Skew(magnitude=0.2), # Skew
HideAndSeekNoise(min_size=90, max_size=210), #Hide and seek noise
GaussianNoise(mean=0, std=(5,20)), # Gaussian noise (only for image) / std 10-20
SaltAndPepperNoise(min_prob=0.01, max_prob=0.03), #Salt and pepper noise (only for image)
transforms.GaussianBlur(kernel_size=3, sigma=(0.2, 1)), # Gaussian blur (only for image)
MotionBlur(min_size=3, max_size=15), # Motion blur (only for image)
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2), # Color jitter (only for image)
]
random.shuffle(augmentation_set)
augmentation_set = augmentation_set[:augmentation_num]
for aug in augmentation_set:
if isinstance(aug, (transforms.GaussianBlur, transforms.ColorJitter, GaussianNoise, SaltAndPepperNoise, MotionBlur)):
img = aug(img)
else:
img = aug(img)
mask = aug(mask)
if self.transform:
img = self.transform(img)
mask = self.transform(mask)
return img, mask, img_path
def __len__(self):
return len(self.imgs)