File size: 2,646 Bytes
ef4adc9
 
 
 
69c4edc
ef4adc9
 
 
 
 
 
69c4edc
ef4adc9
 
 
717088f
 
 
 
 
 
 
ef4adc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369d200
2ab2aaa
c58af09
04787eb
b1f62f6
ac7aadf
92f549c
717088f
ef4adc9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd-tf

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2920
- Validation Loss: 0.6882
- Train Overall Precision: 0.7061
- Train Overall Recall: 0.7943
- Train Overall F1: 0.7476
- Train Overall Accuracy: 0.7966
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7368     | 1.4201          | 0.2646                  | 0.3051               | 0.2834           | 0.5163                 | 0     |
| 1.2040     | 0.9290          | 0.5253                  | 0.6051               | 0.5624           | 0.7138                 | 1     |
| 0.8330     | 0.8307          | 0.5912                  | 0.7010               | 0.6414           | 0.7294                 | 2     |
| 0.6119     | 0.6724          | 0.6667                  | 0.7697               | 0.7145           | 0.7902                 | 3     |
| 0.4706     | 0.6231          | 0.6905                  | 0.7883               | 0.7362           | 0.8068                 | 4     |
| 0.3759     | 0.6366          | 0.7203                  | 0.7933               | 0.7550           | 0.8077                 | 5     |
| 0.3043     | 0.7168          | 0.6989                  | 0.7953               | 0.7440           | 0.7937                 | 6     |
| 0.2920     | 0.6882          | 0.7061                  | 0.7943               | 0.7476           | 0.7966                 | 7     |


### Framework versions

- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3