File size: 2,646 Bytes
ef4adc9 69c4edc ef4adc9 69c4edc ef4adc9 717088f ef4adc9 369d200 2ab2aaa c58af09 04787eb b1f62f6 ac7aadf 92f549c 717088f ef4adc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2920
- Validation Loss: 0.6882
- Train Overall Precision: 0.7061
- Train Overall Recall: 0.7943
- Train Overall F1: 0.7476
- Train Overall Accuracy: 0.7966
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7368 | 1.4201 | 0.2646 | 0.3051 | 0.2834 | 0.5163 | 0 |
| 1.2040 | 0.9290 | 0.5253 | 0.6051 | 0.5624 | 0.7138 | 1 |
| 0.8330 | 0.8307 | 0.5912 | 0.7010 | 0.6414 | 0.7294 | 2 |
| 0.6119 | 0.6724 | 0.6667 | 0.7697 | 0.7145 | 0.7902 | 3 |
| 0.4706 | 0.6231 | 0.6905 | 0.7883 | 0.7362 | 0.8068 | 4 |
| 0.3759 | 0.6366 | 0.7203 | 0.7933 | 0.7550 | 0.8077 | 5 |
| 0.3043 | 0.7168 | 0.6989 | 0.7953 | 0.7440 | 0.7937 | 6 |
| 0.2920 | 0.6882 | 0.7061 | 0.7943 | 0.7476 | 0.7966 | 7 |
### Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|