File size: 4,655 Bytes
5e83b31
 
 
b6fdf6a
 
 
 
 
 
 
766fce4
 
b6fdf6a
 
 
 
 
766fce4
b6fdf6a
 
 
 
 
766fce4
 
b6fdf6a
766fce4
 
b6fdf6a
 
 
 
 
 
 
766fce4
b6fdf6a
 
 
 
 
766fce4
b6fdf6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
766fce4
b6fdf6a
 
 
766fce4
 
b6fdf6a
 
766fce4
 
 
b6fdf6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: mit
---

# Model Card for Model ID
Classification of lego technic pieces under basic room lighting conditions

## Model Details

### Model Description
CNN designed from the ground up, without using a pre-trained model to classify images of lego pieces into 7 categories. <br>
Achieved a 93% validation accuracy

- **Developed by:** Aveek Goswami, Amos Koh
- **Funded by [optional]:** Nullspace Robotics Singapore
- **Model type:** Convolutional Neural Network

### Model Sources

- **Repository:** https://github.com/magichampz/lego-sorting-machine-ag-ak
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/652dc3dab86e108d0fea458c/E7UZXLWPvU_39cxrF49jD.gif)

## Uses
The tflite model (model.tflite) was loaded into a Raspberry Pi running a live object detection script. <br>
The Pi could then detect lego technic pieces in real time as the pieces rolled on a conveyor belt towards the Pi Camera

## Bias, Limitations and Recommendations
The images of the lego pieces used to train the model were taken in 
<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations


<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->


## Training Details

### Training Data
- **Data:** https://huggingface.co/datasets/magichampz/lego-technic-pieces

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

Trained on Google Collabs using the GPU available

#### Hardware

Model loaded into a raspberry pi 3 connected to a PiCamera v2 <br>
RPi mounted on a holder and conveyor belt set-up built with lego


## Citation
Model implemented on the raspberry pi using the ideas from PyImageSearch's blog: <br>
https://pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-opencv/

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]