File size: 1,800 Bytes
1e535a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
tags:
- spacy
- token-classification
- text-classification
language:
- en
model-index:
- name: en_generic_big
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9469753547
- name: NER Recall
type: recall
value: 0.9399555226
- name: NER F Score
type: f_score
value: 0.943452381
---
| Feature | Description |
| --- | --- |
| **Name** | `en_generic_big` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.7.5,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `ner`, `textcat` |
| **Components** | `tok2vec`, `ner`, `textcat` |
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (35 labels for 2 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `AGE`, `BRAND`, `CLOCK_SPEED`, `COLOR`, `CORE_COUNT`, `DECORATION`, `FEATURE`, `FIT`, `GENDER`, `GRAPHICS`, `GRAPHICS_RAM`, `MATERIAL`, `MEASUREMENT`, `MEASUREMENT_AREA`, `MEM_TYPE`, `MODEL_NUMBER`, `NECKLINE`, `OPERATING_SYSTEM`, `PROCESSOR`, `PROCESSOR_MODEL`, `PRODUCT_SERIES`, `RAM`, `RESOLUTION`, `SCREEN_SIZE`, `SCREEN_TYPE`, `SIZE`, `SLEEVE`, `STORAGE`, `STORAGE_TYPE`, `TAG`, `TYPE`, `ZIP` |
| **`textcat`** | `212`, `297`, `328` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 94.35 |
| `ENTS_P` | 94.70 |
| `ENTS_R` | 94.00 |
| `CATS_SCORE` | 100.00 |
| `CATS_MICRO_P` | 100.00 |
| `CATS_MICRO_R` | 100.00 |
| `CATS_MICRO_F` | 100.00 |
| `CATS_MACRO_P` | 100.00 |
| `CATS_MACRO_R` | 100.00 |
| `CATS_MACRO_F` | 100.00 |
| `CATS_MACRO_AUC` | 100.00 |
| `TOK2VEC_LOSS` | 28927.81 |
| `NER_LOSS` | 63903.29 |
| `TEXTCAT_LOSS` | 0.08 | |