File size: 9,113 Bytes
e75e8ff
8bb4fd6
c2dde18
e75e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb4fd6
 
 
 
e75e8ff
8bb4fd6
 
 
 
 
e75e8ff
8bb4fd6
 
 
 
 
 
e75e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155f78e
e75e8ff
 
 
 
 
 
8bb4fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75e8ff
 
 
 
 
155f78e
e75e8ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---

base_model: microsoft/conditional-detr-resnet-50
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: queue_detection
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# queue_detection



This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the None dataset.

It achieves the following results on the evaluation set:

- Loss: 0.2068

- Map: 0.9189

- Map 50: 0.9898

- Map 75: 0.9755

- Map Small: -1.0

- Map Medium: 0.1871

- Map Large: 0.9234

- Mar 1: 0.49

- Mar 10: 0.9447

- Mar 100: 0.9466

- Mar Small: -1.0

- Mar Medium: 0.2615

- Mar Large: 0.9505

- Map Cashier: 0.935

- Mar 100 Cashier: 0.9592

- Map Cx: 0.9027

- Mar 100 Cx: 0.9341



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Cashier | Mar 100 Cashier | Map Cx | Mar 100 Cx |

|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-----------:|:---------------:|:------:|:----------:|

| No log        | 1.0   | 218  | 1.3811          | 0.2363 | 0.4099 | 0.2515 | -1.0      | 0.0        | 0.2376    | 0.2364 | 0.5459 | 0.719   | -1.0      | 0.0        | 0.7238    | 0.2986      | 0.7856          | 0.174  | 0.6523     |

| No log        | 2.0   | 436  | 0.9194          | 0.575  | 0.8212 | 0.6661 | -1.0      | 0.038      | 0.5796    | 0.3518 | 0.7412 | 0.7921  | -1.0      | 0.1        | 0.7978    | 0.6716      | 0.8368          | 0.4783 | 0.7473     |

| 2.4678        | 3.0   | 654  | 0.6968          | 0.6863 | 0.9358 | 0.8313 | -1.0      | 0.0679     | 0.6906    | 0.3901 | 0.7636 | 0.7806  | -1.0      | 0.12       | 0.7848    | 0.7373      | 0.8132          | 0.6354 | 0.7481     |

| 2.4678        | 4.0   | 872  | 0.6535          | 0.7043 | 0.9566 | 0.8452 | -1.0      | 0.0421     | 0.7091    | 0.3916 | 0.7748 | 0.7871  | -1.0      | 0.1615     | 0.7909    | 0.772       | 0.8416          | 0.6366 | 0.7326     |

| 0.723         | 5.0   | 1090 | 0.5906          | 0.7447 | 0.9667 | 0.8788 | -1.0      | 0.0367     | 0.7494    | 0.4113 | 0.8026 | 0.8122  | -1.0      | 0.0955     | 0.8166    | 0.7913      | 0.8551          | 0.6981 | 0.7693     |

| 0.723         | 6.0   | 1308 | 0.5508          | 0.7473 | 0.9631 | 0.893  | 0.0       | 0.0672     | 0.7527    | 0.4199 | 0.8021 | 0.8067  | 0.0       | 0.1077     | 0.812     | 0.7943      | 0.8428          | 0.7002 | 0.7705     |

| 0.5955        | 7.0   | 1526 | 0.5073          | 0.7626 | 0.9656 | 0.9062 | -1.0      | 0.0515     | 0.7673    | 0.423  | 0.8156 | 0.8182  | -1.0      | 0.2273     | 0.8226    | 0.7917      | 0.8476          | 0.7335 | 0.7887     |

| 0.5955        | 8.0   | 1744 | 0.5195          | 0.7452 | 0.9721 | 0.8832 | -1.0      | 0.0559     | 0.7511    | 0.417  | 0.8022 | 0.8105  | -1.0      | 0.1607     | 0.8149    | 0.7925      | 0.8448          | 0.6979 | 0.7762     |

| 0.5955        | 9.0   | 1962 | 0.4328          | 0.8028 | 0.9786 | 0.938  | -1.0      | 0.0481     | 0.808     | 0.441  | 0.8515 | 0.8573  | -1.0      | 0.1154     | 0.8625    | 0.8348      | 0.8846          | 0.7708 | 0.8299     |

| 0.5055        | 10.0  | 2180 | 0.4195          | 0.8085 | 0.9847 | 0.944  | 0.0       | 0.0616     | 0.8129    | 0.4365 | 0.8526 | 0.8591  | 0.0       | 0.1111     | 0.8635    | 0.8241      | 0.8793          | 0.7929 | 0.839      |

| 0.5055        | 11.0  | 2398 | 0.4155          | 0.8145 | 0.9803 | 0.9465 | 0.0       | 0.0555     | 0.8236    | 0.4455 | 0.8556 | 0.8598  | 0.0       | 0.1        | 0.8691    | 0.8373      | 0.8813          | 0.7918 | 0.8383     |

| 0.457         | 12.0  | 2616 | 0.3886          | 0.8301 | 0.984  | 0.9549 | 0.0       | 0.1278     | 0.8355    | 0.4513 | 0.8691 | 0.8731  | 0.0       | 0.1625     | 0.878     | 0.8596      | 0.9024          | 0.8006 | 0.8438     |

| 0.457         | 13.0  | 2834 | 0.3750          | 0.829  | 0.9878 | 0.9563 | -1.0      | 0.1024     | 0.8333    | 0.4508 | 0.8692 | 0.8735  | -1.0      | 0.17       | 0.8772    | 0.8507      | 0.894           | 0.8073 | 0.8531     |

| 0.3971        | 14.0  | 3052 | 0.3571          | 0.8427 | 0.9871 | 0.9524 | -1.0      | 0.0895     | 0.849     | 0.4576 | 0.8803 | 0.8843  | -1.0      | 0.1531     | 0.8903    | 0.8627      | 0.9071          | 0.8227 | 0.8615     |

| 0.3971        | 15.0  | 3270 | 0.3637          | 0.8398 | 0.983  | 0.9587 | 0.0       | 0.0682     | 0.8481    | 0.4565 | 0.8754 | 0.8779  | 0.0       | 0.0972     | 0.8867    | 0.8692      | 0.9062          | 0.8104 | 0.8496     |

| 0.3971        | 16.0  | 3488 | 0.3373          | 0.8494 | 0.9894 | 0.9514 | -1.0      | 0.2611     | 0.8534    | 0.4653 | 0.8849 | 0.8883  | -1.0      | 0.3929     | 0.8923    | 0.8756      | 0.9121          | 0.8233 | 0.8645     |

| 0.387         | 17.0  | 3706 | 0.2885          | 0.8744 | 0.9895 | 0.9712 | -1.0      | 0.1702     | 0.8786    | 0.472  | 0.9076 | 0.9083  | -1.0      | 0.2269     | 0.9124    | 0.8951      | 0.927           | 0.8537 | 0.8897     |

| 0.387         | 18.0  | 3924 | 0.2835          | 0.8737 | 0.9893 | 0.9742 | -1.0      | 0.1473     | 0.8773    | 0.4732 | 0.9064 | 0.9085  | -1.0      | 0.1833     | 0.9119    | 0.8977      | 0.9287          | 0.8498 | 0.8883     |

| 0.3216        | 19.0  | 4142 | 0.2699          | 0.8816 | 0.9894 | 0.9722 | -1.0      | 0.1445     | 0.8865    | 0.4786 | 0.9123 | 0.9142  | -1.0      | 0.3286     | 0.9192    | 0.9065      | 0.9364          | 0.8568 | 0.8919     |

| 0.3216        | 20.0  | 4360 | 0.2711          | 0.8813 | 0.9895 | 0.9727 | -1.0      | 0.1181     | 0.8858    | 0.4775 | 0.914  | 0.9156  | -1.0      | 0.1917     | 0.9199    | 0.9041      | 0.9348          | 0.8584 | 0.8963     |

| 0.3117        | 21.0  | 4578 | 0.2489          | 0.8889 | 0.9897 | 0.9763 | -1.0      | 0.2022     | 0.8934    | 0.4817 | 0.9215 | 0.9228  | -1.0      | 0.25       | 0.9261    | 0.911       | 0.9415          | 0.8668 | 0.9041     |

| 0.3117        | 22.0  | 4796 | 0.2739          | 0.8854 | 0.9846 | 0.9685 | 0.0       | 0.1351     | 0.8944    | 0.4797 | 0.9132 | 0.9159  | 0.0       | 0.2059     | 0.9244    | 0.9071      | 0.9351          | 0.8638 | 0.8968     |

| 0.2812        | 23.0  | 5014 | 0.2489          | 0.8989 | 0.9895 | 0.9702 | -1.0      | 0.188      | 0.9023    | 0.482  | 0.9246 | 0.9269  | -1.0      | 0.2536     | 0.9309    | 0.9183      | 0.9419          | 0.8795 | 0.9118     |

| 0.2812        | 24.0  | 5232 | 0.2267          | 0.9059 | 0.9897 | 0.9829 | -1.0      | 0.2171     | 0.9077    | 0.4861 | 0.9328 | 0.9341  | -1.0      | 0.2818     | 0.9371    | 0.9253      | 0.9488          | 0.8864 | 0.9193     |

| 0.2812        | 25.0  | 5450 | 0.2326          | 0.9057 | 0.9899 | 0.9758 | -1.0      | 0.1995     | 0.9097    | 0.4837 | 0.9316 | 0.9326  | -1.0      | 0.2286     | 0.9371    | 0.9196      | 0.9449          | 0.8917 | 0.9202     |

| 0.26          | 26.0  | 5668 | 0.2111          | 0.915  | 0.9899 | 0.9792 | 0.0       | 0.2832     | 0.9199    | 0.4902 | 0.9408 | 0.9423  | 0.0       | 0.415      | 0.9457    | 0.9267      | 0.9521          | 0.9032 | 0.9325     |

| 0.26          | 27.0  | 5886 | 0.2184          | 0.9132 | 0.9898 | 0.9764 | -1.0      | 0.2546     | 0.9167    | 0.4872 | 0.9375 | 0.9389  | -1.0      | 0.2767     | 0.943     | 0.9277      | 0.95            | 0.8988 | 0.9279     |

| 0.2498        | 28.0  | 6104 | 0.2200          | 0.9159 | 0.9892 | 0.9756 | -1.0      | 0.1921     | 0.9197    | 0.4872 | 0.9397 | 0.9413  | -1.0      | 0.275      | 0.9446    | 0.9314      | 0.9547          | 0.9004 | 0.9279     |

| 0.2498        | 29.0  | 6322 | 0.2075          | 0.9209 | 0.9899 | 0.9791 | -1.0      | 0.317      | 0.9241    | 0.4904 | 0.9448 | 0.9454  | -1.0      | 0.34       | 0.9475    | 0.9345      | 0.9565          | 0.9073 | 0.9342     |

| 0.2519        | 30.0  | 6540 | 0.2068          | 0.9189 | 0.9898 | 0.9755 | -1.0      | 0.1871     | 0.9234    | 0.49   | 0.9447 | 0.9466  | -1.0      | 0.2615     | 0.9505    | 0.935       | 0.9592          | 0.9027 | 0.9341     |





### Framework versions



- Transformers 4.42.3

- Pytorch 2.3.1+cu121

- Datasets 2.20.0

- Tokenizers 0.19.1