#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @Author : Qingping Zheng @Contact : qingpingzheng2014@gmail.com @File : edges.py @Time : 10/01/21 00:00 PM @Desc : @License : Licensed under the Apache License, Version 2.0 (the "License"); @Copyright : Copyright 2022 The Authors. All Rights Reserved. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn.functional as F import torch.nn as nn from inplace_abn import InPlaceABNSync class Edges(nn.Module): def __init__(self, abn=InPlaceABNSync, in_fea=[256,512,1024], mid_fea=256, out_fea=2): super(Edges, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), abn(mid_fea) ) self.conv2 = nn.Sequential( nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), abn(mid_fea) ) self.conv3 = nn.Sequential( nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), abn(mid_fea) ) self.conv4 = nn.Conv2d(mid_fea,out_fea, kernel_size=3, padding=1, dilation=1, bias=True) self.conv5_b = nn.Conv2d(out_fea*3,2, kernel_size=1, padding=0, dilation=1, bias=True) self.conv5 = nn.Conv2d(out_fea*3,out_fea, kernel_size=1, padding=0, dilation=1, bias=True) def forward(self, x1, x2, x3): _, _, h, w = x1.size() edge1_fea = self.conv1(x1) edge1 = self.conv4(edge1_fea) edge2_fea = self.conv2(x2) edge2 = self.conv4(edge2_fea) edge3_fea = self.conv3(x3) edge3 = self.conv4(edge3_fea) edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear',align_corners=True) edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear',align_corners=True) edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear',align_corners=True) edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear',align_corners=True) edge = torch.cat([edge1, edge2, edge3], dim=1) edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1) semantic_edge = self.conv5(edge) binary_edge = self.conv5_b(edge) return binary_edge, semantic_edge, edge_fea