File size: 6,204 Bytes
332190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import cv2
import gdown
import shutil
import argparse
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torchvision.utils import save_image

from inplace_abn import InPlaceABN
from dml_csr import dml_csr
from dml_csr import transforms as dml_transforms


def parse_args():
    parser = argparse.ArgumentParser(description="Plot segmentation mask of an image.")
    parser.add_argument(
        "--image_path", 
        type=str, 
        default=None, 
        help="Path to the image file."
    )
    parser.add_argument("--size", type=int, default=512)
    parser.add_argument(
        "--checkpoint_path", 
        type=str, 
        default='ckpt/DML_CSR/dml_csr_celebA.pth', 
        help="Path to the DML-CSR pretrained model."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output/masks/",
        help="Folder to save segmentation mask."
    )
    args = parser.parse_args()

    return args

def download_checkpoint():
    os.makedirs('ckpt', exist_ok=True)
    id = "1xttWuAj633-ujp_vcm5DtL98PP0b-sUm"
    gdown.download(id=id, output='ckpt/DML_CSR.zip')
    shutil.unpack_archive('ckpt/DML_CSR.zip', 'ckpt')
    os.remove('ckpt/DML_CSR.zip')

def box2cs(box: list) -> tuple:
        x, y, w, h = box[:4]
        return xywh2cs(x, y, w, h)

def xywh2cs(x: float, y: float, w: float, h: float) -> tuple:
    center = np.zeros((2), dtype=np.float32)
    center[0] = x + w * 0.5
    center[1] = y + h * 0.5
    if w > h:
        h = w
    elif w < h:
        w = h
    scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)

    return center, scale

def labelcolormap(N):
    if N == 19: # CelebAMask-HQ
        cmap = np.array([(0,  0,  0), (204, 0,  0), (76, 153, 0),
                     (204, 204, 0), (204, 0, 204), (204, 0, 204), (255, 204, 204),
                     (255, 204, 204), (102, 51, 0), (102, 51, 0), (102, 204, 0),
                     (255, 255, 0), (0, 0, 153), (0, 0, 204), (255, 51, 153), 
                     (0, 204, 204), (0, 51, 0), (255, 153, 51), (0, 204, 0)], 
                     dtype=np.uint8)
    else:
        def uint82bin(n, count=8):
            """returns the binary of integer n, count refers to amount of bits"""
            return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)])
        
        cmap = np.zeros((N, 3), dtype=np.uint8)
        for i in range(N):
            r, g, b = 0, 0, 0
            id = i
            for j in range(7):
                str_id = uint82bin(id)
                r = r ^ (np.uint8(str_id[-1]) << (7-j))
                g = g ^ (np.uint8(str_id[-2]) << (7-j))
                b = b ^ (np.uint8(str_id[-3]) << (7-j))
                id = id >> 3
            cmap[i, 0] = r
            cmap[i, 1] = g
            cmap[i, 2] = b
    return cmap

class Colorize(object):
    def __init__(self, n=19):
        self.cmap = labelcolormap(n)
        self.cmap = torch.from_numpy(self.cmap[:n])

    def __call__(self, gray_image):
        size = gray_image.size()
        color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)

        for label in range(0, len(self.cmap)):
            mask = (label == gray_image[0]).cpu()
            color_image[0][mask] = self.cmap[label][0]
            color_image[1][mask] = self.cmap[label][1]
            color_image[2][mask] = self.cmap[label][2]

        return color_image

def tensor2label(label_tensor, n_label):
    label_tensor = label_tensor.cpu().float()
    if label_tensor.size()[0] > 1:
        label_tensor = label_tensor.max(0, keepdim=True)[1]
    label_tensor = Colorize(n_label)(label_tensor)
    #label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
    label_numpy = label_tensor.numpy()
    label_numpy = label_numpy / 255.0

    return label_numpy

def generate_label(inputs, imsize):
    pred_batch = []
    for input in inputs:
        input = input.view(1, 19, imsize, imsize)
        pred = np.squeeze(input.data.max(1)[1].cpu().numpy(), axis=0)
        pred_batch.append(pred)

    pred_batch = np.array(pred_batch)
    pred_batch = torch.from_numpy(pred_batch)
            
    label_batch = []
    for p in pred_batch:
        p = p.view(1, imsize, imsize)
        label_batch.append(tensor2label(p, 19))
                
    label_batch = np.array(label_batch)
    label_batch = torch.from_numpy(label_batch)

    return label_batch

def get_mask(model, image, input_size):
    interp = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)

    image = image.unsqueeze(0)
    with torch.no_grad():
        outputs = model(image.cuda())
        labels = generate_label(interp(outputs), input_size[0])
        return labels[0]

def save_mask(args):
    os.makedirs(args.output_dir, exist_ok=True)

    cudnn.benchmark = True
    cudnn.enabled = True

    model = dml_csr.DML_CSR(19, InPlaceABN, False)

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    input_size = (args.size, args.size)
    image = cv2.imread(args.image_path, cv2.IMREAD_COLOR)
    h, w, _ = image.shape
    center, s = box2cs([0, 0, w - 1, h - 1])
    r = 0
    crop_size = np.asarray(input_size)
    trans = dml_transforms.get_affine_transform(center, s, r, crop_size)
    image = cv2.warpAffine(image, trans, (int(crop_size[1]), int(crop_size[0])),
                           flags=cv2.INTER_LINEAR,
                           borderMode=cv2.BORDER_CONSTANT,
                           borderValue=(0, 0, 0))
    image = transform(image)

    if not os.path.exists(args.checkpoint_path):
        download_checkpoint()
    state_dict = torch.load(args.checkpoint_path, map_location='cuda:0')
    model.load_state_dict(state_dict)
        
    model.cuda()
    model.eval()

    mask = get_mask(model, image, input_size)
    filename = os.path.join(args.output_dir, os.path.basename(args.image_path).split('.')[0] + '.png')
    save_image(mask, filename)
    print(f'Mask saved in {filename}')


if __name__ == '__main__':
    args = parse_args()
    save_mask(args)