File size: 2,603 Bytes
332190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import transformers
from typing import Union, Optional, Tuple
from transformers import AutoConfig, AutoModel
from transformers.models.clip.modeling_clip import CLIPTextModelOutput


class MCLIPConfig(transformers.PretrainedConfig):
    model_type = "M-CLIP"

    def __init__(self, modelBase='xlm-roberta-large', transformerDimSize=1024, imageDimSize=768, **kwargs):
        self.transformerDimensions = transformerDimSize
        self.numDims = imageDimSize
        self.modelBase = modelBase
        super().__init__(**kwargs)



class MultilingualCLIP(transformers.PreTrainedModel):
    config_class = MCLIPConfig

    def __init__(self, config, *args, **kwargs):
        super().__init__(config, *args, **kwargs)
        self.transformer = transformers.AutoModel.from_pretrained(config.modelBase)
        self.LinearTransformation = torch.nn.Linear(in_features=config.transformerDimensions,
                                                    out_features=config.numDims)

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CLIPTextModelOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        text_outputs = self.transformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = text_outputs[1]

        text_embeds = self.LinearTransformation(pooled_output)

        if not return_dict:
            outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
            return tuple(output for output in outputs if output is not None)

        return CLIPTextModelOutput(
            text_embeds=text_embeds,
            last_hidden_state=text_outputs.last_hidden_state,
            hidden_states=text_outputs.hidden_states,
            attentions=text_outputs.attentions,
        )

    @classmethod
    def _load_state_dict_into_model(cls, model, state_dict, pretrained_model_name_or_path, _fast_init=True):
        model.load_state_dict(state_dict)
        return model, [], [], []
    
AutoConfig.register("M-CLIP", MCLIPConfig)
AutoModel.register(MCLIPConfig, MultilingualCLIP)