lzw1008 commited on
Commit
76d4a17
·
verified ·
1 Parent(s): 5551130

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -37,7 +37,7 @@ All models are trained on the full AAID instruction tuning data.
37
 
38
  ## Usage
39
 
40
- You can use the Emollama-chat-7b model in your Python project with the Hugging Face Transformers library. Here is a simple example of how to load the model:
41
 
42
  ```python
43
  from transformers import AutoTokenizer, AutoModelForCausalLM
@@ -45,7 +45,7 @@ tokenizer = AutoTokenizer.from_pretrained('lzw1008/Emobloom-7b')
45
  model = AutoModelForCausalLM.from_pretrained('lzw1008/Emobloom-7b', device_map='auto')
46
  ```
47
 
48
- In this example, LlamaTokenizer is used to load the tokenizer, and LlamaForCausalLM is used to load the model. The `device_map='auto'` argument is used to automatically
49
  use the GPU if it's available.
50
 
51
  ## Prompt examples
 
37
 
38
  ## Usage
39
 
40
+ You can use the Emobloom-7b model in your Python project with the Hugging Face Transformers library. Here is a simple example of how to load the model:
41
 
42
  ```python
43
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
45
  model = AutoModelForCausalLM.from_pretrained('lzw1008/Emobloom-7b', device_map='auto')
46
  ```
47
 
48
+ In this example, AutoTokenizer is used to load the tokenizer, and AutoModelForCausalLM is used to load the model. The `device_map='auto'` argument is used to automatically
49
  use the GPU if it's available.
50
 
51
  ## Prompt examples