Commit
·
7a6760a
1
Parent(s):
ffa2a91
change for README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/
|
2 |
-
|
3 |
-
|
4 |
-
The model was trained on full [Aidatatang_200zh](https://www.openslr.org/62) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2.
|
5 |
## Training procedure
|
6 |
The main repositories are list below, we will update the training and decoding scripts with the update of version.
|
7 |
k2: https://github.com/k2-fsa/k2
|
@@ -15,25 +14,29 @@ cd icefall
|
|
15 |
```
|
16 |
* Preparing data.
|
17 |
```
|
18 |
-
cd egs/
|
19 |
bash ./prepare.sh
|
20 |
```
|
21 |
* Training
|
22 |
```
|
23 |
-
export CUDA_VISIBLE_DEVICES="0,1"
|
24 |
./pruned_transducer_stateless2/train.py \
|
25 |
-
--world-size
|
26 |
-
--num-epochs
|
27 |
--start-epoch 0 \
|
28 |
--exp-dir pruned_transducer_stateless2/exp \
|
29 |
--lang-dir data/lang_char \
|
30 |
-
--max-duration
|
|
|
|
|
|
|
|
|
31 |
```
|
32 |
## Evaluation results
|
33 |
-
The decoding results (WER%) on
|
34 |
The WERs are
|
35 |
-
| |
|
36 |
-
|
37 |
-
| greedy search |
|
38 |
-
| modified beam search (beam size 4) |
|
39 |
-
| fast beam search (set as default) |
|
|
|
1 |
+
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/349
|
2 |
+
# Pre-trained Transducer-Stateless2 models for the WenetSpeech dataset with icefall.
|
3 |
+
The model was trained on the L subset of WenetSpeech with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2.
|
|
|
4 |
## Training procedure
|
5 |
The main repositories are list below, we will update the training and decoding scripts with the update of version.
|
6 |
k2: https://github.com/k2-fsa/k2
|
|
|
14 |
```
|
15 |
* Preparing data.
|
16 |
```
|
17 |
+
cd egs/wenetspeech/ASR
|
18 |
bash ./prepare.sh
|
19 |
```
|
20 |
* Training
|
21 |
```
|
22 |
+
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
23 |
./pruned_transducer_stateless2/train.py \
|
24 |
+
--world-size 8 \
|
25 |
+
--num-epochs 15 \
|
26 |
--start-epoch 0 \
|
27 |
--exp-dir pruned_transducer_stateless2/exp \
|
28 |
--lang-dir data/lang_char \
|
29 |
+
--max-duration 180 \
|
30 |
+
--valid-interval 3000 \
|
31 |
+
--model-warm-step 3000 \
|
32 |
+
--save-every-n 8000 \
|
33 |
+
--training-subset L
|
34 |
```
|
35 |
## Evaluation results
|
36 |
+
The decoding results (WER%) on WenetSpeech(dev, test-net and test-meeting) are listed below, we got this result by averaging models from epoch 9 to 10.
|
37 |
The WERs are
|
38 |
+
| | dev | test-net | test-meeting | comment |
|
39 |
+
|------------------------------------|-------|----------|--------------|------------------------------------------|
|
40 |
+
| greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 |
|
41 |
+
| modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 |
|
42 |
+
| fast beam search (set as default) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 |
|