Luna OpenLabs
commited on
Create training/train.py
Browse files- training/train.py +56 -0
training/train.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# training/train.py
|
2 |
+
import pandas as pd
|
3 |
+
from torch.utils.data import DataLoader, Dataset
|
4 |
+
from transformers import BertTokenizer
|
5 |
+
from model.luna_model import LunaAI
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from transformers import AdamW
|
9 |
+
|
10 |
+
class TextDataset(Dataset):
|
11 |
+
def __init__(self, csv_file):
|
12 |
+
self.data = pd.read_csv(csv_file)
|
13 |
+
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
14 |
+
|
15 |
+
def __len__(self):
|
16 |
+
return len(self.data)
|
17 |
+
|
18 |
+
def __getitem__(self, idx):
|
19 |
+
text = self.data.iloc[idx, 0]
|
20 |
+
label = self.data.iloc[idx, 1]
|
21 |
+
encoding = self.tokenizer.encode_plus(
|
22 |
+
text,
|
23 |
+
add_special_tokens=True,
|
24 |
+
return_tensors='pt',
|
25 |
+
padding='max_length',
|
26 |
+
max_length=128,
|
27 |
+
truncation=True,
|
28 |
+
)
|
29 |
+
return {
|
30 |
+
'input_ids': encoding['input_ids'].flatten(),
|
31 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
32 |
+
'labels': torch.tensor(label, dtype=torch.long),
|
33 |
+
}
|
34 |
+
|
35 |
+
def train_model(model, dataset):
|
36 |
+
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
|
37 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
38 |
+
|
39 |
+
model.train()
|
40 |
+
for epoch in range(3): # Adjust the number of epochs
|
41 |
+
for batch in dataloader:
|
42 |
+
input_ids = batch['input_ids']
|
43 |
+
attention_mask = batch['attention_mask']
|
44 |
+
labels = batch['labels']
|
45 |
+
|
46 |
+
optimizer.zero_grad()
|
47 |
+
outputs = model(input_ids, attention_mask)
|
48 |
+
loss = nn.CrossEntropyLoss()(outputs, labels)
|
49 |
+
loss.backward()
|
50 |
+
optimizer.step()
|
51 |
+
print(f'Epoch {epoch}, Loss: {loss.item()}')
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
dataset = TextDataset('data/dataset.csv')
|
55 |
+
model = LunaAI()
|
56 |
+
train_model(model, dataset)
|