--- library_name: peft license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5645 - Accuracy: {'accuracy': 0.885} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 334 | 0.5487 | {'accuracy': 0.863} | | 0.4823 | 2.0 | 668 | 0.4822 | {'accuracy': 0.884} | | 0.2578 | 3.0 | 1002 | 0.5645 | {'accuracy': 0.885} | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.21.0