--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/all-mpnet-base-v2 metrics: - accuracy - precision - recall - f1 widget: - text: I appreciate the smooth operation of our public transit system every day. - text: Precision shines through in your flawless execution of the project. - text: Your assistance with the move was invaluable; I couldn’t have managed without you. - text: Well done on orchestrating such a seamless event! - text: The presentation Anne gave was remarkably insightful and comprehensive. pipeline_tag: text-classification inference: false model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.5 name: Accuracy - type: precision value: 0.8 name: Precision - type: recall value: 0.8888888888888888 name: Recall - type: f1 value: 0.8421052631578947 name: F1 --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a MultiOutputClassifier instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.5 | 0.8 | 0.8889 | 0.8421 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Well done on orchestrating such a seamless event!") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 6 | 10.75 | 16 | ### Training Hyperparameters - batch_size: (32, 2) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:------:|:-------------:|:---------------:| | 0.0769 | 1 | 0.3115 | - | | 1.0 | 13 | - | 0.1928 | | 2.0 | 26 | - | 0.1831 | | 3.0 | 39 | - | 0.1724 | | 3.8462 | 50 | 0.08 | - | | **4.0** | **52** | **-** | **0.1614** | | 5.0 | 65 | - | 0.1695 | | 6.0 | 78 | - | 0.1837 | | 7.0 | 91 | - | 0.1904 | | 7.6923 | 100 | 0.0364 | - | | 8.0 | 104 | - | 0.1997 | | 9.0 | 117 | - | 0.1994 | | 10.0 | 130 | - | 0.1967 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.1 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.37.2 - PyTorch: 2.2.0 - Datasets: 2.19.1 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```