File size: 10,248 Bytes
08b3cf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import re
import logging
from typing import List, Optional, Union
import numpy as np
import torch
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import (
PaddingStrategy,
PreTokenizedInput,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType
logger = logging.getLogger(__name__)
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
def _is_str_or_image(elem):
return isinstance(elem, (str)) or is_image_or_image_url(elem)
class MonoProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "CLIPImageProcessor"
# tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(
self,
image_processor=None,
tokenizer=None,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
tokens_to_add = {
"additional_special_tokens": tokenizer.additional_special_tokens
+ ["<od>", "</od>", "<ocr>", "</ocr>"]
+ [f"<loc_{x}>" for x in range(1000)]
+ [
"<cap>",
"</cap>",
"<ncap>",
"</ncap>",
"<dcap>",
"</dcap>",
"<grounding>",
"</grounding>",
"<seg>",
"</seg>",
"<sep>",
"<region_cap>",
"</region_cap>",
"<region_to_desciption>",
"</region_to_desciption>",
"<proposal>",
"</proposal>",
"<poly>",
"</poly>",
"<and>",
]
}
tokenizer.add_special_tokens(tokens_to_add)
self.tasks_answer_post_processing_type = {
"<OCR>": "pure_text",
"<OCR_WITH_REGION>": "ocr",
"<CAPTION>": "pure_text",
"<DETAILED_CAPTION>": "pure_text",
"<MORE_DETAILED_CAPTION>": "pure_text",
"<OD>": "description_with_bboxes",
"<DENSE_REGION_CAPTION>": "description_with_bboxes",
"<CAPTION_TO_PHRASE_GROUNDING>": "phrase_grounding",
"<REFERRING_EXPRESSION_SEGMENTATION>": "polygons",
"<REGION_TO_SEGMENTATION>": "polygons",
"<OPEN_VOCABULARY_DETECTION>": "description_with_bboxes_or_polygons",
"<REGION_TO_CATEGORY>": "pure_text",
"<REGION_TO_DESCRIPTION>": "pure_text",
"<REGION_TO_OCR>": "pure_text",
"<REGION_PROPOSAL>": "bboxes",
}
self.task_prompts_without_inputs = {
"<OCR>": "What is the text in the image?",
"<OCR_WITH_REGION>": "What is the text in the image, with regions?",
"<CAPTION>": "What does the image describe?",
"<DETAILED_CAPTION>": "Describe in detail what is shown in the image.",
"<MORE_DETAILED_CAPTION>": "Describe with a paragraph what is shown in the image.",
"<OD>": "Locate the objects with category name in the image.",
"<DENSE_REGION_CAPTION>": "Locate the objects in the image, with their descriptions.",
"<REGION_PROPOSAL>": "Locate the region proposals in the image.",
}
self.task_prompts_with_input = {
"<CAPTION_TO_PHRASE_GROUNDING>": "Locate the phrases in the caption: {input}",
"<REFERRING_EXPRESSION_SEGMENTATION>": "Locate {input} in the image with mask",
"<REGION_TO_SEGMENTATION>": "What is the polygon mask of region {input}",
"<OPEN_VOCABULARY_DETECTION>": "Locate {input} in the image.",
"<REGION_TO_CATEGORY>": "What is the region {input}?",
"<REGION_TO_DESCRIPTION>": "What does the region {input} describe?",
"<REGION_TO_OCR>": "What text is in the region {input}?",
}
super().__init__(image_processor, tokenizer)
def construct_prompts(self, text):
# replace the task tokens with the task prompts if task token is in the text
if isinstance(text, str):
for task_token, task_prompt in self.task_prompts_without_inputs.items():
if task_token in text:
_text = task_prompt
break
return _text
prompts = []
for _text in text:
# 1. fixed task prompts without additional inputs
for task_token, task_prompt in self.task_prompts_without_inputs.items():
if task_token in _text:
assert (
_text == task_token
), f"Task token {task_token} should be the only token in the text."
_text = task_prompt
break
# 2. task prompts with additional inputs
for task_token, task_prompt in self.task_prompts_with_input.items():
if task_token in _text:
_text = task_prompt.format(input=_text.replace(task_token, ""))
break
prompts.append(_text)
return prompts
def __call__(
self,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
images: ImageInput = None,
tokenize_newline_separately: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
do_resize: bool = None,
size=None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
input_data_format: Optional[
Union[str, "ChannelDimension"] # noqa: F821
] = None,
resample: "PILImageResampling" = None, # noqa: F821
do_convert_rgb: bool = None,
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_rescale: bool = None,
) -> BatchFeature:
return_token_type_ids = False
if text is None:
logger.warning_once("You are using Florence-2 without a text prompt.")
text = ""
if isinstance(text, List) and isinstance(images, List):
if len(images) < len(text):
raise ValueError(
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
)
if _is_str_or_image(text):
text = [text]
elif isinstance(text, list) and _is_str_or_image(text[0]):
pass
if images is not None:
pixel_values = self.image_processor(
images,
size=size,
do_resize=do_resize,
do_normalize=do_normalize,
return_tensors=return_tensors,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
data_format=data_format,
resample=resample,
do_convert_rgb=do_convert_rgb,
)["pixel_values"]
# text = self.construct_prompts(text)
inputs = self.tokenizer(
text,
return_tensors=return_tensors,
padding=padding,
max_length=max_length,
truncation=truncation,
return_token_type_ids=return_token_type_ids,
)
if images is not None:
# print(inputs)
# add IMAGE_TOKEN
inputs_with_image = [
torch.cat((torch.tensor([-200]), b), dim=0) for b in inputs["input_ids"]
]
# inputs["input_ids"] = torch.stack(inputs_with_image)
inputs["input_ids"] = inputs_with_image
return_data = {**inputs, "pixel_values": pixel_values}
else:
return_data = {**inputs, "pixel_values": None}
if return_token_type_ids:
labels = inputs["input_ids"].masked_fill(
inputs["token_type_ids"] == 0, -100
)
return_data.update({"labels": labels})
return BatchFeature(data=return_data)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|