File size: 9,384 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import logging
import math
from pathlib import Path

import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm

from s3prl import Logs, Object, Output
from s3prl.nn import S3PRLUpstream, UpstreamDownstreamModel
from s3prl.sampler import DistributedBatchSamplerWrapper
from s3prl.superb import sid as problem

device = "cuda" if torch.cuda.is_available() else "cpu"
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("voxceleb1", help="The root directory of VoxCeleb1")
    parser.add_argument("save_to", help="The directory to save checkpoint")
    parser.add_argument("--total_steps", type=int, default=200000)
    parser.add_argument("--log_step", type=int, default=100)
    parser.add_argument("--eval_step", type=int, default=5000)
    parser.add_argument("--save_step", type=int, default=100)
    parser.add_argument("--resume", action="store_true")
    args = parser.parse_args()
    return args


def main():
    logging.basicConfig()
    logger.setLevel(logging.INFO)

    args = parse_args()
    voxceleb1 = Path(args.voxceleb1)
    assert voxceleb1.is_dir()
    save_to = Path(args.save_to)
    save_to.mkdir(exist_ok=True, parents=True)

    logger.info("Preparing preprocessor")
    preprocessor = problem.Preprocessor(voxceleb1)

    logger.info("Preparing train dataloader")
    train_dataset = problem.TrainDataset(**preprocessor.train_data())
    train_sampler = problem.TrainSampler(
        train_dataset, max_timestamp=16000 * 200, shuffle=True
    )
    train_sampler = DistributedBatchSamplerWrapper(
        train_sampler, num_replicas=1, rank=0
    )
    train_dataloader = DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=12,
        collate_fn=train_dataset.collate_fn,
    )

    logger.info("Preparing valid dataloader")
    valid_dataset = problem.ValidDataset(
        **preprocessor.valid_data(),
        **train_dataset.statistics(),
    )
    valid_dataset.save_checkpoint(save_to / "valid_dataset.ckpt")
    valid_sampler = problem.ValidSampler(valid_dataset, 8)
    valid_sampler = DistributedBatchSamplerWrapper(
        valid_sampler, num_replicas=1, rank=0
    )
    valid_dataloader = DataLoader(
        valid_dataset,
        batch_sampler=valid_sampler,
        num_workers=12,
        collate_fn=valid_dataset.collate_fn,
    )

    logger.info("Preparing test dataloader")
    test_dataset = problem.TestDataset(
        **preprocessor.test_data(),
        **train_dataset.statistics(),
    )
    test_dataset.save_checkpoint(save_to / "test_dataset.ckpt")
    test_sampler = problem.TestSampler(test_dataset, 8)
    test_sampler = DistributedBatchSamplerWrapper(test_sampler, num_replicas=1, rank=0)
    test_dataloader = DataLoader(
        test_dataset, batch_size=8, num_workers=12, collate_fn=test_dataset.collate_fn
    )

    latest_task = save_to / "task.ckpt"
    if args.resume and latest_task.is_file():
        logger.info("Last checkpoint found. Load model and optimizer from checkpoint")

        # Object.load_checkpoint() from a checkpoint path and
        # Object.from_checkpoint() from a loaded checkpoint dictionary
        # are like AutoModel in Huggingface which you only need to
        # provide the checkpoint for restoring the module.
        #
        # Note that source code definition should be importable, since this
        # auto loading mechanism is just automating the model re-initialization
        # steps instead of scriptify (torch.jit) all the source code in the
        # checkpoint

        task = Object.load_checkpoint(latest_task).to(device)

    else:
        logger.info("No last checkpoint found. Create new model")

        # Model creation block which can be fully customized
        upstream = S3PRLUpstream("wav2vec2")
        downstream = problem.DownstreamModel(
            upstream.output_size, len(preprocessor.statistics().category)
        )
        model = UpstreamDownstreamModel(upstream, downstream)

        # After customize your own model, simply put it into task object
        task = problem.Task(model, preprocessor.statistics().category)
        task = task.to(device)

    # We do not handle optimizer/scheduler in any special way in S3PRL, since
    # there are lots of dedicated package for this. Hence, we also do not handle
    # the checkpointing for optimizer/scheduler. Depends on what training pipeline
    # the user prefer, either Lightning or SpeechBrain, these frameworks will
    # provide different solutions on how to save these objects. By not handling
    # these objects in S3PRL we are making S3PRL more flexible and agnostic to training pipeline
    # The following optimizer codeblock aims to align with the standard usage
    # of PyTorch which is the standard way to save it.

    optimizer = optim.Adam(task.parameters(), lr=1e-3)
    latest_optimizer = save_to / "optimizer.ckpt"
    if args.resume and latest_optimizer.is_file():
        optimizer.load_state_dict(torch.load(save_to / "optimizer.ckpt"))
    else:
        optimizer = optim.Adam(task.parameters(), lr=1e-3)

    # The following code block demonstrate how to train with your own training loop
    # This entire block can be easily replaced with Lightning/SpeechBrain Trainer as
    #
    #     Trainer(task)
    #     Trainer.fit(train_dataloader, valid_dataloader, test_dataloader)
    #
    # As you can see, there is a huge similarity among train/valid/test loops below,
    # so it is a natural step to share these logics with a generic Trainer class
    # as done in Lightning/SpeechBrain

    pbar = tqdm(total=args.total_steps, desc="Total")
    while True:
        batch_results = []
        for batch in tqdm(train_dataloader, desc="Train", total=len(train_dataloader)):
            pbar.update(1)
            global_step = pbar.n

            assert isinstance(batch, Output)
            optimizer.zero_grad()

            # An Output object can more all its direct
            # attributes/values to the device
            batch = batch.to(device)

            # An Output object is an OrderedDict so we
            # can use dict decomposition here
            task.train()
            result = task.train_step(**batch)
            assert isinstance(result, Output)

            # The output of train step must contain
            # at least a loss key
            result.loss.backward()

            # gradient clipping
            grad_norm = torch.nn.utils.clip_grad_norm_(task.parameters(), max_norm=1.0)

            if math.isnan(grad_norm):
                logger.warning(f"Grad norm is NaN at step {global_step}")
            else:
                optimizer.step()

            # Detach from GPU, remove large logging (to Tensorboard or local files)
            # objects like logits and leave only small data like loss scalars / prediction
            # strings, so that these objects can be safely cached in a list in the MEM,
            # and become useful for calculating metrics later
            # The Output class can do these with self.cacheable()
            cacheable_result = result.cacheable()

            # Cache these small data for later metric calculation
            batch_results.append(cacheable_result)

            if (global_step + 1) % args.log_step == 0:
                logs: Logs = task.train_reduction(batch_results).logs
                logger.info(f"[Train] step {global_step}")
                for log in logs.values():
                    logger.info(f"{log.name}: {log.data}")
                batch_results = []

            if (global_step + 1) % args.eval_step == 0:
                with torch.no_grad():
                    task.eval()

                    # valid
                    valid_results = []
                    for batch in tqdm(
                        valid_dataloader, desc="Valid", total=len(valid_dataloader)
                    ):
                        batch = batch.to(device)
                        result = task.valid_step(**batch)
                        cacheable_result = result.cacheable()
                        valid_results.append(cacheable_result)

                    logs: Logs = task.valid_reduction(valid_results).logs
                    logger.info(f"[Valid] step {global_step}")
                    for log in logs.values():
                        logger.info(f"{log.name}: {log.data}")

                    # test
                    test_results = []
                    for batch in tqdm(
                        test_dataloader, desc="Test", total=len(test_dataloader)
                    ):
                        batch = batch.to(device)
                        result = task.test_step(**batch)
                        cacheable_result = result.cacheable()
                        test_results.append(cacheable_result)

                    logs: Logs = task.test_reduction(test_results).logs
                    logger.info(f"[Test] step {global_step}")
                    for log in logs.values():
                        logger.info(f"{log.name}: {log.data}")

            if (global_step + 1) % args.save_step == 0:
                task.save_checkpoint(save_to / "task.ckpt")
                torch.save(optimizer.state_dict(), save_to / "optimizer.ckpt")


if __name__ == "__main__":
    main()