File size: 44,076 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
:tocdepth: 2

S3PRL Upstream Collection
=======================================

We collect almost all the existing SSL pre-trained models in S3PRL,
so you can import and use them easily in an unified I/O interface.

:obj:`s3prl.nn.upstream.S3PRLUpstream` is an easy interface to retrieve all the self-supervised learning (SSL) pre-trained models
available in S3PRL. the :code:`name` argument for :obj:`s3prl.nn.upstream.S3PRLUpstream` specifies the checkpoint,
and then the pre-trained models in this checkpoint will be automatically constructed and
initialized.

Here is an example on how to get a hubert model and its representation using the :code:`name='hubert'`:

.. code-block:: python

    import torch
    from s3prl.nn import S3PRLUpstream

    model = S3PRLUpstream("hubert")
    model.eval()

    with torch.no_grad():
        wavs = torch.randn(2, 16000 * 2)
        wavs_len = torch.LongTensor([16000 * 1, 16000 * 2])
        all_hs, all_hs_len = model(wavs, wavs_len)

    for hs, hs_len in zip(all_hs, all_hs_len):
        assert isinstance(hs, torch.FloatTensor)
        assert isinstance(hs_len, torch.LongTensor)

        batch_size, max_seq_len, hidden_size = hs.shape
        assert hs_len.dim() == 1

.. tip::

    For each SSL learning method, like wav2vec 2.0, there are several checkpoint variants, trained by
    different amount of unlabeled data, or different model sizes. Hence there are also various
    :code:`name` to retrieve these different models.

    Like, the HuBERT method has "hubert" and "hubert_large_ll60k" different names for different
    checkpoint variants.

.. tip::

    Some SSL pre-trained models' entries can be further configured by a :code:`extra_conf` dictionary.
    See :obj:`s3prl.nn.S3PRLUpstream`. You can find the valid :code:`extra_conf` options in each SSL
    model category. If not documented, by default it does not support any :code:`extra_conf`.

The following includes the model and checkpoint information for each :code:`name`, including the releasing date,
paper, citation, model architecture, pre-training data, criterion, and their source code. The format follows:



SSL Method
--------------------------------------------------------
`Paper full title with arxiv link <https://arxiv.org/>`_

.. code-block:: bash

    @article{citation-block,
        title={Paper Title},
        author={Authors},
        year={2020},
        month={May}
    }

The information shared across checkpoint variants.

name1
~~~~~~~~~~~~~~~~~~~

The detailed specific information for this checkpoint variant (:code:`name=name1`)

name2
~~~~~~~~~~~~~~~~~~~

The detailed specific information for this checkpoint variant (:code:`name=name2`)



Mockingjay
--------------------------------------------------------
`Mockingjay: Unsupervised Speech Representation Learning with Deep Bidirectional Transformer Encoders <https://arxiv.org/abs/1910.12638>`_

.. code-block:: bash

    @article{mockingjay,
        title={Mockingjay: Unsupervised Speech Representation Learning with Deep Bidirectional Transformer Encoders},
        ISBN={9781509066315},
        url={http://dx.doi.org/10.1109/ICASSP40776.2020.9054458},
        DOI={10.1109/icassp40776.2020.9054458},
        journal={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        publisher={IEEE},
        author={Liu, Andy T. and Yang, Shu-wen and Chi, Po-Han and Hsu, Po-chun and Lee, Hung-yi},
        year={2020},
        month={May}
    }

Mockingjay is a BERT on Spectrogram, with 12-layers of transformer encoders in the paper.


mockingjay
~~~~~~~~~~~~~~~~

This is alias for `mockingjay_origin`_

mockingjay_origin
~~~~~~~~~~~~~~~~~~~~~~~~

This is alias for `mockingjay_logMelLinearLarge_T_AdamW_b32_500k_360hr_drop1`_

mockingjay_100hr
~~~~~~~~~~~~~~~~

This is alias for `mockingjay_logMelBase_T_AdamW_b32_200k_100hr`_

mockingjay_960hr
~~~~~~~~~~~~~~~~

This is alias for `mockingjay_logMelBase_T_AdamW_b32_1m_960hr_drop1`_

mockingjay_logMelBase_T_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr

mockingjay_logMelLinearLarge_T_AdamW_b32_500k_360hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel (input) / 201-dim Linear (target)
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 500k
- Unlabled Speech: LibriSpeech 360hr

mockingjay_logMelBase_T_AdamW_b32_1m_960hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr

mockingjay_logMelBase_T_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: Dropout of 0.1 (instead of 0.3)


mockingjay_logMelBase_T_AdamW_b32_1m_960hr_seq3k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: sequence length of 3k (instead of 1.5k)



TERA
--------------------------------------------------------
`TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech <https://arxiv.org/abs/2007.06028>`_

.. code-block:: bash

    @misc{tera,
        title={TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech},
        author={Andy T. Liu and Shang-Wen Li and Hung-yi Lee},
        year={2020},
        eprint={2007.06028},
        archivePrefix={arXiv},
        primaryClass={eess.AS}
    }


tera
~~~~~~~~~~~~~~~~

This is alias for `tera_960hr`_

tera_100hr
~~~~~~~~~~~~~~~~~~

This is alias for `tera_logMelBase_T_F_M_AdamW_b32_200k_100hr`_

tera_960hr
~~~~~~~~~~~~~~~~~~~

This is alias for `tera_logMelBase_T_F_M_AdamW_b32_1m_960hr_drop1`_

tera_logMelBase_T_F_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr

tera_logMelBase_T_F_M_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time + freq + mag
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr

tera_logMelBase_T_F_AdamW_b32_1m_960hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr

tera_logMelBase_T_F_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: Dropout of 0.1 (instead of 0.3)

tera_logMelBase_T_F_AdamW_b32_1m_960hr_seq3k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: sequence length of 3k (instead of 1.5k)

tera_logMelBase_T_F_M_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time + freq + mag
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: 960hr
- Differences: Dropout of 0.1 (instead of 0.3)

tera_fbankBase_T_F_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 240-dim fbank
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr



Audio ALBERT
--------------------------------------------------------
`Audio ALBERT: A Lite BERT for Self-supervised Learning of Audio Representation <https://arxiv.org/abs/2007.06028>`_

.. code-block:: bash

    @inproceedings{chi2021audio,
        title={Audio albert: A lite bert for self-supervised learning of audio representation},
        author={Chi, Po-Han and Chung, Pei-Hung and Wu, Tsung-Han and Hsieh, Chun-Cheng and Chen, Yen-Hao and Li, Shang-Wen and Lee, Hung-yi},
        booktitle={2021 IEEE Spoken Language Technology Workshop (SLT)},
        pages={344--350},
        year={2021},
        organization={IEEE}
    }


audio_albert
~~~~~~~~~~~~~~~~

This is alias of `audio_albert_960hr`_


audio_albert_960hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is alias of `audio_albert_logMelBase_T_share_AdamW_b32_1m_960hr_drop1`_


audio_albert_logMelBase_T_share_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr



APC
--------------------------------------------------------
`An Unsupervised Autoregressive Model for Speech Representation Learning <https://arxiv.org/abs/1904.03240>`_

.. code-block:: bash

    @inproceedings{chung2019unsupervised,
        title = {An unsupervised autoregressive model for speech representation learning},
        author = {Chung, Yu-An and Hsu, Wei-Ning and Tang, Hao and Glass, James},
        booktitle = {Interspeech},
        year = {2019}
    }


apc
~~~~~~~~~~~~~~~~

This is alias of `apc_360hr`_


apc_360hr
~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 360hr


apc_960hr
~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr



VQ-APC
--------------------------------------------------------
`Vector-Quantized Autoregressive Predictive Coding <https://arxiv.org/abs/2005.08392>`_

.. code-block:: bash

    @inproceedings{chung2020vqapc,
        title = {Vector-quantized autoregressive predictive coding},
        autohor = {Chung, Yu-An and Tang, Hao and Glass, James},
        booktitle = {Interspeech},
        year = {2020}
    }

vq_apc
~~~~~~~~~~~~~~~~

This is alias of `vq_apc_360hr`_


vq_apc_360hr
~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 360hr


vq_apc_960hr
~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr



NPC
--------------------------------------------------------
`Non-Autoregressive Predictive Coding for Learning Speech Representations from Local Dependencies <https://arxiv.org/abs/2011.00406>`_

.. code-block:: bash

    @article{liu2020nonautoregressive,
        title   = {Non-Autoregressive Predictive Coding for Learning Speech Representations from Local Dependencies},
        author  = {Liu, Alexander and Chung, Yu-An and Glass, James},
        journal = {arXiv preprint arXiv:2011.00406},
        year    = {2020}
    }


npc
~~~~~~~~~~~~~~~~

This is alias of `npc_360hr`_


npc_360hr
~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 360hr


npc_960hr
~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr



PASE+
--------------------------------------------------------
`Multi-task self-supervised learning for Robust Speech Recognition <https://arxiv.org/abs/2001.09239>`_

.. code-block:: bash

    @inproceedings{ravanelli2020multi,
        title={Multi-task self-supervised learning for robust speech recognition},
        author={Ravanelli, Mirco and Zhong, Jianyuan and Pascual, Santiago and Swietojanski, Pawel and Monteiro, Joao and Trmal, Jan and Bengio, Yoshua},
        booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        pages={6989--6993},
        year={2020},
        organization={IEEE}
    }

.. hint::

    To use PASE models, there are many extra dependencies required to install.
    Please follow the below installation instruction:

    .. code-block:: bash

        pip install -r https://raw.githubusercontent.com/s3prl/s3prl/master/s3prl/upstream/pase/requirements.txt


pase_plus
~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 50hr



Modified CPC
--------------------------------------------------------
`Unsupervised pretraining transfers well across languages <https://arxiv.org/abs/2002.02848>`_

.. code-block:: bash

    @inproceedings{riviere2020unsupervised,
        title={Unsupervised pretraining transfers well across languages},
        author={Riviere, Morgane and Joulin, Armand and Mazar{\'e}, Pierre-Emmanuel and Dupoux, Emmanuel},
        booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        pages={7414--7418},
        year={2020},
        organization={IEEE}
    }

.. note::

    This is a slightly improved version on the original CPC by DeepMind. To cite the DeepMind version:

    .. code-block:: bash

        @article{oord2018representation,
            title={Representation learning with contrastive predictive coding},
            author={Oord, Aaron van den and Li, Yazhe and Vinyals, Oriol},
            journal={arXiv preprint arXiv:1807.03748},
            year={2018}
        }


modified_cpc
~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriLight 60k hours



DeCoAR
--------------------------------------------------------
`Deep contextualized acoustic representations for semi-supervised speech recognition <https://arxiv.org/abs/1912.01679>`_

.. code-block:: bash

    @inproceedings{ling2020deep,
        title={Deep contextualized acoustic representations for semi-supervised speech recognition},
        author={Ling, Shaoshi and Liu, Yuzong and Salazar, Julian and Kirchhoff, Katrin},
        booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        pages={6429--6433},
        year={2020},
        organization={IEEE}
    }


decoar_layers
~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr


DeCoAR 2.0
--------------------------------------------------------
`DeCoAR 2.0: Deep Contextualized Acoustic Representations with Vector Quantization <https://arxiv.org/abs/2012.06659>`_

.. code-block:: bash

    @misc{ling2020decoar,
        title={DeCoAR 2.0: Deep Contextualized Acoustic Representations with Vector Quantization}, 
        author={Shaoshi Ling and Yuzong Liu},
        year={2020},
        eprint={2012.06659},
        archivePrefix={arXiv},
        primaryClass={eess.AS}
    }


decoar2
~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr



wav2vec
--------------------------------------------------
`wav2vec: Unsupervised Pre-Training for Speech Recognition <https://arxiv.org/abs/1904.05862>`_

.. code-block:: bash

    @article{schneider2019wav2vec,
        title={wav2vec: Unsupervised Pre-Training for Speech Recognition},
        author={Schneider, Steffen and Baevski, Alexei and Collobert, Ronan and Auli, Michael},
        journal={Proc. Interspeech 2019},
        pages={3465--3469},
        year={2019}
    }


wav2vec
~~~~~~~~~~~

This is alias of `wav2vec_large`_


wav2vec_large
~~~~~~~~~~~~~~~

This is the official wav2vec model from fairseq.

- Unlabled Speech: LibriSpeech 960hr


vq-wav2vec
--------------------------------------------------
`vq-wav2vec: Self-supervised learning of discrete speech representations <https://arxiv.org/abs/1910.05453>`_

.. code-block:: bash

    @inproceedings{baevski2019vq,
        title={vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations},
        author={Baevski, Alexei and Schneider, Steffen and Auli, Michael},
        booktitle={International Conference on Learning Representations},
        year={2019}
    }

.. note::

    We only take the Conv encoders' hidden_states for vq-wav2vec in this SSL method category.
    If you wish to consider the BERT model after ths Conv encoders, please refer to `Discrete BERT`_.

vq_wav2vec
~~~~~~~~~~~

This is alias of `vq_wav2vec_gumbel`_


vq_wav2vec_gumbel
~~~~~~~~~~~~~~~~~~~~

This is the official vq-wav2vec model from fairseq.
This model uses gumbel-softmax as the quantization technique

- Unlabled Speech: LibriSpeech 960hr


vq_wav2vec_kmeans
~~~~~~~~~~~~~~~~~~~~~

This is the official vq-wav2vec model from fairseq.
This model uses K-means as the quantization technique


Discrete BERT
--------------------------------------------------
`vq-wav2vec: Self-supervised learning of discrete speech representations <https://arxiv.org/abs/1910.05453>`_

.. code-block:: bash

    @inproceedings{baevski2019vq,
        title={vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations},
        author={Baevski, Alexei and Schneider, Steffen and Auli, Michael},
        booktitle={International Conference on Learning Representations},
        year={2019}
    }

This method takes the Conv feature encoder's output, quantize it into token ids, and feed the
tokens into a NLP BERT (Specifically, RoBERTa). The output hidden_states are all the hidden hidden_states
of the NLP BERT (excluding the hidden_states in `vq-wav2vec`_)


discretebert
~~~~~~~~~~~~~~~~

Alias of `vq_wav2vec_kmeans_roberta`_


vq_wav2vec_kmeans_roberta
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This model uses `vq_wav2vec_kmeans`_ as the frontend waveform tokenizer. After the waveform is tokenized
into a sequence of token ids, tokens are then fed into a RoBERTa model.



wav2vec 2.0
--------------------------------------------------
`wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations <https://arxiv.org/abs/2006.11477>`_

.. code-block:: bash

    @article{baevski2020wav2vec,
        title={wav2vec 2.0: A framework for self-supervised learning of speech representations},
        author={Baevski, Alexei and Zhou, Yuhao and Mohamed, Abdelrahman and Auli, Michael},
        journal={Advances in Neural Information Processing Systems},
        volume={33},
        pages={12449--12460},
        year={2020}
    }

All the entries below support the following :code:`extra_conf`:

====================  ====================
column                description
====================  ====================
feature_selection     (str) -
                        if :code:`fairseq_layers` or :code:`fairseq_layers_before_residual`,
                        extract the representation following official fairseq API.
                        for :code:`fairseq_layers`, it is the output of each transformer
                        encoder layer; for :code:`fairseq_layers_before_residual`, it is
                        the output of the feedforward layer (before adding with the
                        main residual) of each transformer encoder layer. by default
                        this option is None, which follows the default place to extract
                        in S3PRL.
====================  ====================


wav2vec2_custom
~~~~~~~~~~~~~~~~~~~~~

This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
the local path or a url of the checkpoint converted by :code:`s3prl/upstream/wav2vec2/convert.py` (
from a regular fairseq checkpoint.)

This entry also supports the following additional :code:`extra_conf`.

====================  ====================
column                description
====================  ====================
fairseq               (bool) -
                        If True, perform the on-the-fly checkpoint conversion, so that
                        you can directly give the fairseq checkpoint to the :code:`path_or_url`
                        argument, either a fairseq URL or a fairseq checkpoint local path.
====================  ====================


hf_wav2vec2_custom
~~~~~~~~~~~~~~~~~~~~

This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
in the HuggingFace format, like :code:`facebook/wav2vec2-large-960h`


wav2vec2
~~~~~~~~~~~~~~~~

This is the alias of `wav2vec2_base_960`_


wav2vec2_base_960
~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the official wav2vec 2.0 model in fairseq

- Architecture: 12-layer Transformer encoders
- Unlabled Speech: LibriSpeech 960hr


wav2vec2_large_960
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Architecture: 24-layer Transformer encoders
- Unlabled Speech: LibriSpeech 960hr


wav2vec2_large_ll60k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Architecture: 24-layer Transformer encoders
- Unlabled Speech: LibriLight LL60k hours


wav2vec2_large_lv60_cv_swbd_fsh
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Large model trained on Libri-Light 60k hours + CommonVoice + Switchboard + Fisher

- Architecture: 24-layer Transformer encoders
- Unlabeled Speech: Libri-Light 60k hours + CommonVoice + Switchboard + Fisher


wav2vec2_conformer_relpos
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The results can be found in the Table 4 of `fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`_.

- Architecture: 24-layer Conformer encoders with relative positional encoding
- Unlabeled Speech: LibriLight LL60k hours


wav2vec2_conformer_rope
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The results can be found in the Table 4 of `fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`_.

- Architecture: 24-layer Conformer encoders with ROPE positional encoding
- Unlabeled Speech: LibriLight LL60k hours


wav2vec2_base_s2st_es_voxpopuli
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/transformer_B.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/transformer_B.pt>`_


wav2vec2_base_s2st_en_librilight
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/transformer_B.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/transformer_B.pt>`_


wav2vec2_conformer_large_s2st_es_voxpopuli
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/conformer_L.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/conformer_L.pt>`_


wav2vec2_conformer_large_s2st_en_librilight
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/conformer_L.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/conformer_L.pt>`_


xlsr_53
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The wav2vec 2.0 model trained on multilingual presented in `Unsupervised Cross-lingual Representation Learning for Speech Recognition <https://arxiv.org/abs/2006.13979>`_

.. code-block:: bash

    @article{conneau2020unsupervised,
        title={Unsupervised cross-lingual representation learning for speech recognition},
        author={Conneau, Alexis and Baevski, Alexei and Collobert, Ronan and Mohamed, Abdelrahman and Auli, Michael},
        journal={arXiv preprint arXiv:2006.13979},
        year={2020}
    }


XLS-R
--------------------------------------------------
`XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale <https://arxiv.org/abs/2111.09296>`_

.. code-block:: bash

    @article{babu2021xls,
        title={XLS-R: Self-supervised cross-lingual speech representation learning at scale},
        author={Babu, Arun and Wang, Changhan and Tjandra, Andros and Lakhotia, Kushal and Xu, Qiantong and Goyal, Naman and Singh, Kritika and von Platen, Patrick and Saraf, Yatharth and Pino, Juan and others},
        journal={arXiv preprint arXiv:2111.09296},
        year={2021}
    }


xls_r_300m
~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: 128 languages, 436K hours


xls_r_1b
~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: 128 languages, 436K hours


xls_r_2b
~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: 128 languages, 436K hours


HuBERT
--------------------------------------------------
`HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units <https://arxiv.org/abs/2106.07447>`_

.. code-block:: bash

    @article{hsu2021hubert,
        title={Hubert: Self-supervised speech representation learning by masked prediction of hidden units},
        author={Hsu, Wei-Ning and Bolte, Benjamin and Tsai, Yao-Hung Hubert and Lakhotia, Kushal and Salakhutdinov, Ruslan and Mohamed, Abdelrahman},
        journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
        volume={29},
        pages={3451--3460},
        year={2021},
        publisher={IEEE}
    }


hubert_custom
~~~~~~~~~~~~~~~~~~~~~

This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
the local path or a url of the checkpoint converted by :code:`s3prl/upstream/hubert/convert.py` (
from a regular fairseq checkpoint.)

This entry also supports the following additional :code:`extra_conf`.

====================  ====================
column                description
====================  ====================
fairseq               (bool) -
                        If True, perform the on-the-fly checkpoint conversion, so that
                        you can directly give the fairseq checkpoint to the :code:`path_or_url`
                        argument, either a fairseq URL or a fairseq checkpoint local path.
====================  ====================


hf_hubert_custom
~~~~~~~~~~~~~~~~~~~~

This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
in the HuggingFace format, like :code:`facebook/hubert-large-ll60k`


hubert
~~~~~~~~~~~~~~~~~~~~~

This is alias of `hubert_base`_


hubert_base
~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr


hubert_large_ll60k
~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriLight ll60k hours


mhubert_base_vp_en_es_fr_it3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The multilingual model from `Textless Speech-to-Speech Translation on Real Data <https://arxiv.org/abs/2112.08352>`_


ESPnetHuBERT
----------------------
`Reducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Academic Compute <https://arxiv.org/abs/2306.06672>`_

.. code-block:: bash

    @inproceedings{chen23l_interspeech,
        author={William Chen and Xuankai Chang and Yifan Peng and Zhaoheng Ni and Soumi Maiti and Shinji Watanabe},
        title={{Reducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Academic Compute}},
        year=2023,
        booktitle={Proc. INTERSPEECH 2023},
        pages={4404--4408},
        doi={10.21437/Interspeech.2023-1176}
    }


espnet_hubert_custom
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This entry expects you to provide the source of the checkpoint: :code:`ckpt`, which should be
the local path of the checkpoint pretrained from ESPnet (e.g., latest.pth).


espnet_hubert_base_iter0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: LibriSpeech 960hr (first iteration of HuBERT pre-training)


espnet_hubert_base_iter1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: LibriSpeech 960hr (second iteration of HuBERT pre-training)


espnet_hubert_large_gs_ll60k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: LibriLight ll60k hours
- Labeled Speech: GigaSpeech 10k hours (to get units)


WavLabLM
----------------------
`Joint Prediction and Denoising for Large-scale Multilingual Self-supervised Learning <https://arxiv.org/abs/2309.15317>`_

.. code-block:: bash

    @inproceedings{chen23joint,
        author={William Chen and Jiatong Shi and Brian Yan and Dan Berrebbi and Wangyou Zhang and Yifan Peng and Xuankai Chang and Soumi Maiti and Shinji Watanabe},
        title={Joint Prediction and Denoising for Large-scale Multilingual Self-supervised Learning},
        year=2023,
        booktitle={IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)},
    }


cvhubert
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: Commonvoice V11 Multilingual Data (13.6k hours)
- only 20ms resolution version is provided. `check huggingface  for other resolutions <https://huggingface.co/espnet/espnet_cvhubert/tree/main>`_


wavlablm_ek_40k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: Openli110 (Combination of Commonvoice, Voxpopuli, MLS, Googlei18n, around 39k hours)
- Initialed from hubert_large_ll60k and continue train with English based k-means from librispeech


wavlablm_mk_40k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: Openli110 (Combination of Commonvoice, Voxpopuli, MLS, Googlei18n, around 39k hours)
- Trained from scratch and use a multilingual k-means from the training data


wavlablm_ms_40k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: Openli110 (Combination of Commonvoice, Voxpopuli, MLS, Googlei18n, around 39k hours)
- Trained from scratch and use a multilingual k-means from the training data with a multi-stage training


Multiresolution HuBERT (MR-HuBERT)
----------------------
`Multi-resolution HuBERT: Multi-resolution Speech Self-Supervised Learning with Masked Unit Prediction <https://openreview.net/pdf?id=kUuKFW7DIF>`_

.. code-block:: bash

    @inproceedings{anonymous2023multiresolution,
        title={Multi-resolution Hu{BERT}: Multi-resolution Speech Self-Supervised Learning with Masked Unit Prediction},
        author={Anonymous},
        booktitle={Submitted to The Twelfth International Conference on Learning Representations},
        year={2023},
        url={https://openreview.net/forum?id=kUuKFW7DIF},
        note={under review}
    }


multires_hubert_custom
~~~~~~~~~~~~~~~~~~~~~

This entry expects you to provide the source of the checkpoint: :code:`ckpt`, which should be
the local path or a url of the checkpoint converted by :code:`s3prl/upstream/multires_hubert/convert.py` (
from a regular fairseq checkpoint.)
For more available checkpoints, please check `Fairseq official release <https://github.com/facebookresearch/fairseq/blob/main/examples/mr_hubert/README.md>`_
Related converted checkpoints are also at `S3PRL HuggingFace Repo <https://huggingface.co/s3prl/mr_hubert>`_


multires_hubert_base
~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr
- K-means extracted from `hubert_base`_


multires_hubert_large
~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: LibriLight 60khr
- K-means extracted from `hubert_base`_


multires_hubert_multilingual_base
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: Voxpopuli 100khr
- K-means extracted from `hubert_base`_


multires_hubert_multilingual_large400k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: Voxpopuli 100khr
- K-means extracted from `hubert_base`_
- Training steps 400k


multires_hubert_multilingual_large600k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Unlabeled Speech: Voxpopuli 100khr
- K-means extracted from `hubert_base`_
- Training steps 600k


DistilHuBERT
----------------------
`DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT <https://arxiv.org/abs/2110.01900>`_

.. code-block:: bash

    @inproceedings{chang2022distilhubert,
        title={DistilHuBERT: Speech representation learning by layer-wise distillation of hidden-unit BERT},
        author={Chang, Heng-Jui and Yang, Shu-wen and Lee, Hung-yi},
        booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        pages={7087--7091},
        year={2022},
        organization={IEEE}
    }


distilhubert
~~~~~~~~~~~~~~~~~~~~~

Alias of `distilhubert_base`_


distilhubert_base
~~~~~~~~~~~~~~~~~~~~~

- Teacher: `hubert_base`_
- Unlabled Speech: LibriSpeech 960hr


HuBERT-MGR
--------------------------------------------------
`Improving Distortion Robustness of Self-supervised Speech Processing Tasks with Domain Adaptation <https://arxiv.org/abs/2203.16104>`_

.. code-block:: bash

    @article{huang2022improving,
        title={Improving Distortion Robustness of Self-supervised Speech Processing Tasks with Domain Adaptation},
        author={Huang, Kuan Po and Fu, Yu-Kuan and Zhang, Yu and Lee, Hung-yi},
        journal={arXiv preprint arXiv:2203.16104},
        year={2022}
    }


hubert_base_robust_mgr
~~~~~~~~~~~~~~~~~~~~~~~

- Unlabled Speech: LibriSpeech 960hr
- Augmentation: MUSAN, gaussian, reverberation


Unispeech-SAT
--------------------------------------------------
`Unispeech-sat: Universal speech representation learning with speaker aware pre-training <https://arxiv.org/abs/2110.05752>`_

.. code-block:: bash

    @inproceedings{chen2022unispeech,
        title={Unispeech-sat: Universal speech representation learning with speaker aware pre-training},
        author={Chen, Sanyuan and Wu, Yu and Wang, Chengyi and Chen, Zhengyang and Chen, Zhuo and Liu, Shujie and Wu, Jian and Qian, Yao and Wei, Furu and Li, Jinyu and others},
        booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
        pages={6152--6156},
        year={2022},
        organization={IEEE}
    }


unispeech_sat
~~~~~~~~~~~~~~~~~~~~~

Alias of `unispeech_sat_base`_


unispeech_sat_base
~~~~~~~~~~~~~~~~~~~~~~

- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriSpeech 960 hours


unispeech_sat_base_plus
~~~~~~~~~~~~~~~~~~~~~~~~~~

- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours


unispeech_sat_large
~~~~~~~~~~~~~~~~~~~~~~~~

- Model Architecture: 24 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours



WavLM
--------------------------------------------------
`WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing <https://arxiv.org/abs/2110.13900>`_

.. code-block:: bash

    @article{Chen2021WavLM,
        title   = {WavLM: Large-Scale Self-Supervised  Pre-training   for Full Stack Speech Processing},
        author  = {Sanyuan Chen and Chengyi Wang and Zhengyang Chen and Yu Wu and Shujie Liu and Zhuo Chen and Jinyu Li and Naoyuki Kanda and Takuya Yoshioka and Xiong Xiao and Jian Wu and Long Zhou and Shuo Ren and Yanmin Qian and Yao Qian and Jian Wu and Michael Zeng and Furu Wei},
        eprint={2110.13900},
        archivePrefix={arXiv},
        primaryClass={cs.CL},
        year={2021}
    }


wavlm
~~~~~~~~~~~~~~~~~

Alias of `wavlm_base_plus`_


wavlm_base
~~~~~~~~~~~~~~~~

- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriSpeech 960 hours


wavlm_base_plus
~~~~~~~~~~~~~~~~~~~~~

- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours


wavlm_large
~~~~~~~~~~~~~~~~~~~~~

- Model Architecture: 24 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours


data2vec
--------------------------------------------------
`data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language <https://arxiv.org/abs/2202.03555>`_

.. code-block:: bash

    @article{baevski2022data2vec,
        title={Data2vec: A general framework for self-supervised learning in speech, vision and language},
        author={Baevski, Alexei and Hsu, Wei-Ning and Xu, Qiantong and Babu, Arun and Gu, Jiatao and Auli, Michael},
        journal={arXiv preprint arXiv:2202.03555},
        year={2022}
    }


data2vec
~~~~~~~~~~~~~~~~~

Alias of `data2vec_base_960`_


data2vec_base_960
~~~~~~~~~~~~~~~~~~

- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriSpeech 960 hours


data2vec_large_ll60k
~~~~~~~~~~~~~~~~~~~~~

- Model Architecture: 24 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours


AST
--------------------------------------------------
`AST: Audio Spectrogram Transformer <https://arxiv.org/abs/2104.01778>`_

.. code-block:: bash

    @article{gong2021ast,
        title={Ast: Audio spectrogram transformer},
        author={Gong, Yuan and Chung, Yu-An and Glass, James},
        journal={arXiv preprint arXiv:2104.01778},
        year={2021}
    }


All the entries below support the following :code:`extra_conf`:

====================  ====================
column                description
====================  ====================
window_secs           (float) -
                        The segment waveform length to feed into the
                        AST model. If the input waveform is longer than this
                        length, do sliding windowing on the waveform and concat
                        the results along the time axis.
stride_secs           (float) -
                        When doing sliding window on the waveform (see
                        above), the stride seconds between windows.
====================  ====================


ast
~~~~~~~~~~~~~~~~~~

- Labeled Data: AudioSet


SSAST
--------------------------------------------------
`SSAST: Self-Supervised Audio Spectrogram Transformer <https://arxiv.org/abs/2110.09784>`_

.. code-block:: bash

    @inproceedings{gong2022ssast,
        title={Ssast: Self-supervised audio spectrogram transformer},
        author={Gong, Yuan and Lai, Cheng-I and Chung, Yu-An and Glass, James},
        booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
        volume={36},
        number={10},
        pages={10699--10709},
        year={2022}
    }


All the entries below support the following :code:`extra_conf`:

====================  ====================
column                description
====================  ====================
window_secs           (float) -
                        The segment waveform length to feed into the
                        AST model. If the input waveform is longer than this
                        length, do sliding windowing on the waveform and concat
                        the results along the time axis.
====================  ====================


ssast_frame_base
~~~~~~~~~~~~~~~~~~

- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 128 (freq) * 2 (time)

ssast_patch_base
~~~~~~~~~~~~~~~~~~~

- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 16 (freq) * 16 (time)


MAE-AST
--------------------------------------------------
`MAE-AST: Masked Autoencoding Audio Spectrogram Transformer <https://arxiv.org/abs/2203.16691>`_

.. code-block:: bash

    @article{baade2022mae,
        title={MAE-AST: Masked Autoencoding Audio Spectrogram Transformer},
        author={Baade, Alan and Peng, Puyuan and Harwath, David},
        journal={arXiv preprint arXiv:2203.16691},
        year={2022}
    }


mae_ast_frame
~~~~~~~~~~~~~~~~~~

- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 128 (freq) * 2 (time)


mae_ast_patch
~~~~~~~~~~~~~~~~~~

- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 16 (freq) * 16 (time)


Byol-A
--------------------------------------------------
`BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation <https://arxiv.org/abs/2103.06695>`_

.. code-block:: bash

    @inproceedings{niizumi2021byol,
        title={BYOL for audio: Self-supervised learning for general-purpose audio representation},
        author={Niizumi, Daisuke and Takeuchi, Daiki and Ohishi, Yasunori and Harada, Noboru and Kashino, Kunio},
        booktitle={2021 International Joint Conference on Neural Networks (IJCNN)},
        pages={1--8},
        year={2021},
        organization={IEEE}
    }


All the entries below support the following :code:`extra_conf`:

====================  ====================
column                description
====================  ====================
window_secs           (float) -
                        The segment waveform length to feed into the
                        AST model. If the input waveform is longer than this
                        length, do sliding windowing on the waveform and concat
                        the results along the time axis.
stride_secs           (float) -
                        When doing sliding window on the waveform (see
                        above), the stride seconds between windows.
====================  ====================


byol_a_2048
~~~~~~~~~~~~~~~~~~

- Unlabled Data: AudioSet


byol_a_1024
~~~~~~~~~~~~~~~~~~

- Unlabled Data: AudioSet


byol_a_512
~~~~~~~~~~~~~~~~~~

- Unlabled Data: AudioSet


Byol-S
--------------------------------------------------
`BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping <https://arxiv.org/abs/2206.12038>`_

.. code-block:: bash

    @article{elbanna2022byol,
        title={Byol-s: Learning self-supervised speech representations by bootstrapping},
        author={Elbanna, Gasser and Scheidwasser-Clow, Neil and Kegler, Mikolaj and Beckmann, Pierre and Hajal, Karl El and Cernak, Milos},
        journal={arXiv preprint arXiv:2206.12038},
        year={2022}
    }


byol_s_default
~~~~~~~~~~~~~~~~~~

- Unlabled Data: AudioSet (Speech subset)


byol_s_cvt
~~~~~~~~~~~~~~~~~~

- Unlabled Data: AudioSet (Speech subset)


byol_s_resnetish34
~~~~~~~~~~~~~~~~~~

- Unlabled Data: AudioSet (Speech subset)


VGGish
--------------------------------------------------
`CNN Architectures for Large-Scale Audio Classification <https://arxiv.org/abs/1609.09430>`_

.. code-block:: bash

    @inproceedings{hershey2017cnn,
        title={CNN architectures for large-scale audio classification},
        author={Hershey, Shawn and Chaudhuri, Sourish and Ellis, Daniel PW and Gemmeke, Jort F and Jansen, Aren and Moore, R Channing and Plakal, Manoj and Platt, Devin and Saurous, Rif A and Seybold, Bryan and others},
        booktitle={2017 ieee international conference on acoustics, speech and signal processing (icassp)},
        pages={131--135},
        year={2017},
        organization={IEEE}
    }


vggish
~~~~~~~~~~~~~~~~~~

- Labaled Data: AudioSet


PaSST
--------------------------------------------------
`Efficient Training of Audio Transformers with Patchout <https://arxiv.org/abs/2110.05069>`_

.. code-block:: bash

    @article{koutini2021efficient,
        title={Efficient training of audio transformers with patchout},
        author={Koutini, Khaled and Schl{\"u}ter, Jan and Eghbal-zadeh, Hamid and Widmer, Gerhard},
        journal={arXiv preprint arXiv:2110.05069},
        year={2021}
    }

All the entries below support the following :code:`extra_conf`:

====================  ====================
column                description
====================  ====================
window_secs           (float) -
                        The segment waveform length to feed into the
                        model. If the input waveform is longer than this
                        length, do sliding windowing on the waveform and concat
                        the results along the time axis.
stride_secs           (float) -
                        When doing sliding window on the waveform (see
                        above), the stride seconds between windows.
====================  ====================

passt_base
~~~~~~~~~~~~~~~~~~

- Labaled Data: AudioSet


Authors:

- Leo 2022