File size: 44,076 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 |
:tocdepth: 2
S3PRL Upstream Collection
=======================================
We collect almost all the existing SSL pre-trained models in S3PRL,
so you can import and use them easily in an unified I/O interface.
:obj:`s3prl.nn.upstream.S3PRLUpstream` is an easy interface to retrieve all the self-supervised learning (SSL) pre-trained models
available in S3PRL. the :code:`name` argument for :obj:`s3prl.nn.upstream.S3PRLUpstream` specifies the checkpoint,
and then the pre-trained models in this checkpoint will be automatically constructed and
initialized.
Here is an example on how to get a hubert model and its representation using the :code:`name='hubert'`:
.. code-block:: python
import torch
from s3prl.nn import S3PRLUpstream
model = S3PRLUpstream("hubert")
model.eval()
with torch.no_grad():
wavs = torch.randn(2, 16000 * 2)
wavs_len = torch.LongTensor([16000 * 1, 16000 * 2])
all_hs, all_hs_len = model(wavs, wavs_len)
for hs, hs_len in zip(all_hs, all_hs_len):
assert isinstance(hs, torch.FloatTensor)
assert isinstance(hs_len, torch.LongTensor)
batch_size, max_seq_len, hidden_size = hs.shape
assert hs_len.dim() == 1
.. tip::
For each SSL learning method, like wav2vec 2.0, there are several checkpoint variants, trained by
different amount of unlabeled data, or different model sizes. Hence there are also various
:code:`name` to retrieve these different models.
Like, the HuBERT method has "hubert" and "hubert_large_ll60k" different names for different
checkpoint variants.
.. tip::
Some SSL pre-trained models' entries can be further configured by a :code:`extra_conf` dictionary.
See :obj:`s3prl.nn.S3PRLUpstream`. You can find the valid :code:`extra_conf` options in each SSL
model category. If not documented, by default it does not support any :code:`extra_conf`.
The following includes the model and checkpoint information for each :code:`name`, including the releasing date,
paper, citation, model architecture, pre-training data, criterion, and their source code. The format follows:
SSL Method
--------------------------------------------------------
`Paper full title with arxiv link <https://arxiv.org/>`_
.. code-block:: bash
@article{citation-block,
title={Paper Title},
author={Authors},
year={2020},
month={May}
}
The information shared across checkpoint variants.
name1
~~~~~~~~~~~~~~~~~~~
The detailed specific information for this checkpoint variant (:code:`name=name1`)
name2
~~~~~~~~~~~~~~~~~~~
The detailed specific information for this checkpoint variant (:code:`name=name2`)
Mockingjay
--------------------------------------------------------
`Mockingjay: Unsupervised Speech Representation Learning with Deep Bidirectional Transformer Encoders <https://arxiv.org/abs/1910.12638>`_
.. code-block:: bash
@article{mockingjay,
title={Mockingjay: Unsupervised Speech Representation Learning with Deep Bidirectional Transformer Encoders},
ISBN={9781509066315},
url={http://dx.doi.org/10.1109/ICASSP40776.2020.9054458},
DOI={10.1109/icassp40776.2020.9054458},
journal={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
publisher={IEEE},
author={Liu, Andy T. and Yang, Shu-wen and Chi, Po-Han and Hsu, Po-chun and Lee, Hung-yi},
year={2020},
month={May}
}
Mockingjay is a BERT on Spectrogram, with 12-layers of transformer encoders in the paper.
mockingjay
~~~~~~~~~~~~~~~~
This is alias for `mockingjay_origin`_
mockingjay_origin
~~~~~~~~~~~~~~~~~~~~~~~~
This is alias for `mockingjay_logMelLinearLarge_T_AdamW_b32_500k_360hr_drop1`_
mockingjay_100hr
~~~~~~~~~~~~~~~~
This is alias for `mockingjay_logMelBase_T_AdamW_b32_200k_100hr`_
mockingjay_960hr
~~~~~~~~~~~~~~~~
This is alias for `mockingjay_logMelBase_T_AdamW_b32_1m_960hr_drop1`_
mockingjay_logMelBase_T_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr
mockingjay_logMelLinearLarge_T_AdamW_b32_500k_360hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel (input) / 201-dim Linear (target)
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 500k
- Unlabled Speech: LibriSpeech 360hr
mockingjay_logMelBase_T_AdamW_b32_1m_960hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
mockingjay_logMelBase_T_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: Dropout of 0.1 (instead of 0.3)
mockingjay_logMelBase_T_AdamW_b32_1m_960hr_seq3k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: sequence length of 3k (instead of 1.5k)
TERA
--------------------------------------------------------
`TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech <https://arxiv.org/abs/2007.06028>`_
.. code-block:: bash
@misc{tera,
title={TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech},
author={Andy T. Liu and Shang-Wen Li and Hung-yi Lee},
year={2020},
eprint={2007.06028},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
tera
~~~~~~~~~~~~~~~~
This is alias for `tera_960hr`_
tera_100hr
~~~~~~~~~~~~~~~~~~
This is alias for `tera_logMelBase_T_F_M_AdamW_b32_200k_100hr`_
tera_960hr
~~~~~~~~~~~~~~~~~~~
This is alias for `tera_logMelBase_T_F_M_AdamW_b32_1m_960hr_drop1`_
tera_logMelBase_T_F_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr
tera_logMelBase_T_F_M_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time + freq + mag
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr
tera_logMelBase_T_F_AdamW_b32_1m_960hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
tera_logMelBase_T_F_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: Dropout of 0.1 (instead of 0.3)
tera_logMelBase_T_F_AdamW_b32_1m_960hr_seq3k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
- Differences: sequence length of 3k (instead of 1.5k)
tera_logMelBase_T_F_M_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time + freq + mag
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: 960hr
- Differences: Dropout of 0.1 (instead of 0.3)
tera_fbankBase_T_F_AdamW_b32_200k_100hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 240-dim fbank
- Alteration: time + freq
- Optimizer: AdamW
- Batch size: 32
- Total steps: 200k
- Unlabled Speech: LibriSpeech 100hr
Audio ALBERT
--------------------------------------------------------
`Audio ALBERT: A Lite BERT for Self-supervised Learning of Audio Representation <https://arxiv.org/abs/2007.06028>`_
.. code-block:: bash
@inproceedings{chi2021audio,
title={Audio albert: A lite bert for self-supervised learning of audio representation},
author={Chi, Po-Han and Chung, Pei-Hung and Wu, Tsung-Han and Hsieh, Chun-Cheng and Chen, Yen-Hao and Li, Shang-Wen and Lee, Hung-yi},
booktitle={2021 IEEE Spoken Language Technology Workshop (SLT)},
pages={344--350},
year={2021},
organization={IEEE}
}
audio_albert
~~~~~~~~~~~~~~~~
This is alias of `audio_albert_960hr`_
audio_albert_960hr
~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is alias of `audio_albert_logMelBase_T_share_AdamW_b32_1m_960hr_drop1`_
audio_albert_logMelBase_T_share_AdamW_b32_1m_960hr_drop1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Feature: 80-dim log Mel
- Alteration: time
- Optimizer: AdamW
- Batch size: 32
- Total steps: 1M
- Unlabled Speech: LibriSpeech 960hr
APC
--------------------------------------------------------
`An Unsupervised Autoregressive Model for Speech Representation Learning <https://arxiv.org/abs/1904.03240>`_
.. code-block:: bash
@inproceedings{chung2019unsupervised,
title = {An unsupervised autoregressive model for speech representation learning},
author = {Chung, Yu-An and Hsu, Wei-Ning and Tang, Hao and Glass, James},
booktitle = {Interspeech},
year = {2019}
}
apc
~~~~~~~~~~~~~~~~
This is alias of `apc_360hr`_
apc_360hr
~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 360hr
apc_960hr
~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
VQ-APC
--------------------------------------------------------
`Vector-Quantized Autoregressive Predictive Coding <https://arxiv.org/abs/2005.08392>`_
.. code-block:: bash
@inproceedings{chung2020vqapc,
title = {Vector-quantized autoregressive predictive coding},
autohor = {Chung, Yu-An and Tang, Hao and Glass, James},
booktitle = {Interspeech},
year = {2020}
}
vq_apc
~~~~~~~~~~~~~~~~
This is alias of `vq_apc_360hr`_
vq_apc_360hr
~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 360hr
vq_apc_960hr
~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
NPC
--------------------------------------------------------
`Non-Autoregressive Predictive Coding for Learning Speech Representations from Local Dependencies <https://arxiv.org/abs/2011.00406>`_
.. code-block:: bash
@article{liu2020nonautoregressive,
title = {Non-Autoregressive Predictive Coding for Learning Speech Representations from Local Dependencies},
author = {Liu, Alexander and Chung, Yu-An and Glass, James},
journal = {arXiv preprint arXiv:2011.00406},
year = {2020}
}
npc
~~~~~~~~~~~~~~~~
This is alias of `npc_360hr`_
npc_360hr
~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 360hr
npc_960hr
~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
PASE+
--------------------------------------------------------
`Multi-task self-supervised learning for Robust Speech Recognition <https://arxiv.org/abs/2001.09239>`_
.. code-block:: bash
@inproceedings{ravanelli2020multi,
title={Multi-task self-supervised learning for robust speech recognition},
author={Ravanelli, Mirco and Zhong, Jianyuan and Pascual, Santiago and Swietojanski, Pawel and Monteiro, Joao and Trmal, Jan and Bengio, Yoshua},
booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={6989--6993},
year={2020},
organization={IEEE}
}
.. hint::
To use PASE models, there are many extra dependencies required to install.
Please follow the below installation instruction:
.. code-block:: bash
pip install -r https://raw.githubusercontent.com/s3prl/s3prl/master/s3prl/upstream/pase/requirements.txt
pase_plus
~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 50hr
Modified CPC
--------------------------------------------------------
`Unsupervised pretraining transfers well across languages <https://arxiv.org/abs/2002.02848>`_
.. code-block:: bash
@inproceedings{riviere2020unsupervised,
title={Unsupervised pretraining transfers well across languages},
author={Riviere, Morgane and Joulin, Armand and Mazar{\'e}, Pierre-Emmanuel and Dupoux, Emmanuel},
booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7414--7418},
year={2020},
organization={IEEE}
}
.. note::
This is a slightly improved version on the original CPC by DeepMind. To cite the DeepMind version:
.. code-block:: bash
@article{oord2018representation,
title={Representation learning with contrastive predictive coding},
author={Oord, Aaron van den and Li, Yazhe and Vinyals, Oriol},
journal={arXiv preprint arXiv:1807.03748},
year={2018}
}
modified_cpc
~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriLight 60k hours
DeCoAR
--------------------------------------------------------
`Deep contextualized acoustic representations for semi-supervised speech recognition <https://arxiv.org/abs/1912.01679>`_
.. code-block:: bash
@inproceedings{ling2020deep,
title={Deep contextualized acoustic representations for semi-supervised speech recognition},
author={Ling, Shaoshi and Liu, Yuzong and Salazar, Julian and Kirchhoff, Katrin},
booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={6429--6433},
year={2020},
organization={IEEE}
}
decoar_layers
~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
DeCoAR 2.0
--------------------------------------------------------
`DeCoAR 2.0: Deep Contextualized Acoustic Representations with Vector Quantization <https://arxiv.org/abs/2012.06659>`_
.. code-block:: bash
@misc{ling2020decoar,
title={DeCoAR 2.0: Deep Contextualized Acoustic Representations with Vector Quantization},
author={Shaoshi Ling and Yuzong Liu},
year={2020},
eprint={2012.06659},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
decoar2
~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
wav2vec
--------------------------------------------------
`wav2vec: Unsupervised Pre-Training for Speech Recognition <https://arxiv.org/abs/1904.05862>`_
.. code-block:: bash
@article{schneider2019wav2vec,
title={wav2vec: Unsupervised Pre-Training for Speech Recognition},
author={Schneider, Steffen and Baevski, Alexei and Collobert, Ronan and Auli, Michael},
journal={Proc. Interspeech 2019},
pages={3465--3469},
year={2019}
}
wav2vec
~~~~~~~~~~~
This is alias of `wav2vec_large`_
wav2vec_large
~~~~~~~~~~~~~~~
This is the official wav2vec model from fairseq.
- Unlabled Speech: LibriSpeech 960hr
vq-wav2vec
--------------------------------------------------
`vq-wav2vec: Self-supervised learning of discrete speech representations <https://arxiv.org/abs/1910.05453>`_
.. code-block:: bash
@inproceedings{baevski2019vq,
title={vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations},
author={Baevski, Alexei and Schneider, Steffen and Auli, Michael},
booktitle={International Conference on Learning Representations},
year={2019}
}
.. note::
We only take the Conv encoders' hidden_states for vq-wav2vec in this SSL method category.
If you wish to consider the BERT model after ths Conv encoders, please refer to `Discrete BERT`_.
vq_wav2vec
~~~~~~~~~~~
This is alias of `vq_wav2vec_gumbel`_
vq_wav2vec_gumbel
~~~~~~~~~~~~~~~~~~~~
This is the official vq-wav2vec model from fairseq.
This model uses gumbel-softmax as the quantization technique
- Unlabled Speech: LibriSpeech 960hr
vq_wav2vec_kmeans
~~~~~~~~~~~~~~~~~~~~~
This is the official vq-wav2vec model from fairseq.
This model uses K-means as the quantization technique
Discrete BERT
--------------------------------------------------
`vq-wav2vec: Self-supervised learning of discrete speech representations <https://arxiv.org/abs/1910.05453>`_
.. code-block:: bash
@inproceedings{baevski2019vq,
title={vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations},
author={Baevski, Alexei and Schneider, Steffen and Auli, Michael},
booktitle={International Conference on Learning Representations},
year={2019}
}
This method takes the Conv feature encoder's output, quantize it into token ids, and feed the
tokens into a NLP BERT (Specifically, RoBERTa). The output hidden_states are all the hidden hidden_states
of the NLP BERT (excluding the hidden_states in `vq-wav2vec`_)
discretebert
~~~~~~~~~~~~~~~~
Alias of `vq_wav2vec_kmeans_roberta`_
vq_wav2vec_kmeans_roberta
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This model uses `vq_wav2vec_kmeans`_ as the frontend waveform tokenizer. After the waveform is tokenized
into a sequence of token ids, tokens are then fed into a RoBERTa model.
wav2vec 2.0
--------------------------------------------------
`wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations <https://arxiv.org/abs/2006.11477>`_
.. code-block:: bash
@article{baevski2020wav2vec,
title={wav2vec 2.0: A framework for self-supervised learning of speech representations},
author={Baevski, Alexei and Zhou, Yuhao and Mohamed, Abdelrahman and Auli, Michael},
journal={Advances in Neural Information Processing Systems},
volume={33},
pages={12449--12460},
year={2020}
}
All the entries below support the following :code:`extra_conf`:
==================== ====================
column description
==================== ====================
feature_selection (str) -
if :code:`fairseq_layers` or :code:`fairseq_layers_before_residual`,
extract the representation following official fairseq API.
for :code:`fairseq_layers`, it is the output of each transformer
encoder layer; for :code:`fairseq_layers_before_residual`, it is
the output of the feedforward layer (before adding with the
main residual) of each transformer encoder layer. by default
this option is None, which follows the default place to extract
in S3PRL.
==================== ====================
wav2vec2_custom
~~~~~~~~~~~~~~~~~~~~~
This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
the local path or a url of the checkpoint converted by :code:`s3prl/upstream/wav2vec2/convert.py` (
from a regular fairseq checkpoint.)
This entry also supports the following additional :code:`extra_conf`.
==================== ====================
column description
==================== ====================
fairseq (bool) -
If True, perform the on-the-fly checkpoint conversion, so that
you can directly give the fairseq checkpoint to the :code:`path_or_url`
argument, either a fairseq URL or a fairseq checkpoint local path.
==================== ====================
hf_wav2vec2_custom
~~~~~~~~~~~~~~~~~~~~
This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
in the HuggingFace format, like :code:`facebook/wav2vec2-large-960h`
wav2vec2
~~~~~~~~~~~~~~~~
This is the alias of `wav2vec2_base_960`_
wav2vec2_base_960
~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the official wav2vec 2.0 model in fairseq
- Architecture: 12-layer Transformer encoders
- Unlabled Speech: LibriSpeech 960hr
wav2vec2_large_960
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Architecture: 24-layer Transformer encoders
- Unlabled Speech: LibriSpeech 960hr
wav2vec2_large_ll60k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Architecture: 24-layer Transformer encoders
- Unlabled Speech: LibriLight LL60k hours
wav2vec2_large_lv60_cv_swbd_fsh
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Large model trained on Libri-Light 60k hours + CommonVoice + Switchboard + Fisher
- Architecture: 24-layer Transformer encoders
- Unlabeled Speech: Libri-Light 60k hours + CommonVoice + Switchboard + Fisher
wav2vec2_conformer_relpos
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The results can be found in the Table 4 of `fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`_.
- Architecture: 24-layer Conformer encoders with relative positional encoding
- Unlabeled Speech: LibriLight LL60k hours
wav2vec2_conformer_rope
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The results can be found in the Table 4 of `fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`_.
- Architecture: 24-layer Conformer encoders with ROPE positional encoding
- Unlabeled Speech: LibriLight LL60k hours
wav2vec2_base_s2st_es_voxpopuli
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/transformer_B.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/transformer_B.pt>`_
wav2vec2_base_s2st_en_librilight
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/transformer_B.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/transformer_B.pt>`_
wav2vec2_conformer_large_s2st_es_voxpopuli
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/conformer_L.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/es/conformer_L.pt>`_
wav2vec2_conformer_large_s2st_en_librilight
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The wav2vec2 model from `Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation <https://arxiv.org/abs/2204.02967>`_,
- released in Fairseq with the link: `https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/conformer_L.pt <https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/w2v2/en/conformer_L.pt>`_
xlsr_53
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The wav2vec 2.0 model trained on multilingual presented in `Unsupervised Cross-lingual Representation Learning for Speech Recognition <https://arxiv.org/abs/2006.13979>`_
.. code-block:: bash
@article{conneau2020unsupervised,
title={Unsupervised cross-lingual representation learning for speech recognition},
author={Conneau, Alexis and Baevski, Alexei and Collobert, Ronan and Mohamed, Abdelrahman and Auli, Michael},
journal={arXiv preprint arXiv:2006.13979},
year={2020}
}
XLS-R
--------------------------------------------------
`XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale <https://arxiv.org/abs/2111.09296>`_
.. code-block:: bash
@article{babu2021xls,
title={XLS-R: Self-supervised cross-lingual speech representation learning at scale},
author={Babu, Arun and Wang, Changhan and Tjandra, Andros and Lakhotia, Kushal and Xu, Qiantong and Goyal, Naman and Singh, Kritika and von Platen, Patrick and Saraf, Yatharth and Pino, Juan and others},
journal={arXiv preprint arXiv:2111.09296},
year={2021}
}
xls_r_300m
~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: 128 languages, 436K hours
xls_r_1b
~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: 128 languages, 436K hours
xls_r_2b
~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: 128 languages, 436K hours
HuBERT
--------------------------------------------------
`HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units <https://arxiv.org/abs/2106.07447>`_
.. code-block:: bash
@article{hsu2021hubert,
title={Hubert: Self-supervised speech representation learning by masked prediction of hidden units},
author={Hsu, Wei-Ning and Bolte, Benjamin and Tsai, Yao-Hung Hubert and Lakhotia, Kushal and Salakhutdinov, Ruslan and Mohamed, Abdelrahman},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
volume={29},
pages={3451--3460},
year={2021},
publisher={IEEE}
}
hubert_custom
~~~~~~~~~~~~~~~~~~~~~
This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
the local path or a url of the checkpoint converted by :code:`s3prl/upstream/hubert/convert.py` (
from a regular fairseq checkpoint.)
This entry also supports the following additional :code:`extra_conf`.
==================== ====================
column description
==================== ====================
fairseq (bool) -
If True, perform the on-the-fly checkpoint conversion, so that
you can directly give the fairseq checkpoint to the :code:`path_or_url`
argument, either a fairseq URL or a fairseq checkpoint local path.
==================== ====================
hf_hubert_custom
~~~~~~~~~~~~~~~~~~~~
This entry expects you to provide the source of the checkpoint: :code:`path_or_url`, which should be
in the HuggingFace format, like :code:`facebook/hubert-large-ll60k`
hubert
~~~~~~~~~~~~~~~~~~~~~
This is alias of `hubert_base`_
hubert_base
~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
hubert_large_ll60k
~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriLight ll60k hours
mhubert_base_vp_en_es_fr_it3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The multilingual model from `Textless Speech-to-Speech Translation on Real Data <https://arxiv.org/abs/2112.08352>`_
ESPnetHuBERT
----------------------
`Reducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Academic Compute <https://arxiv.org/abs/2306.06672>`_
.. code-block:: bash
@inproceedings{chen23l_interspeech,
author={William Chen and Xuankai Chang and Yifan Peng and Zhaoheng Ni and Soumi Maiti and Shinji Watanabe},
title={{Reducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Academic Compute}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
pages={4404--4408},
doi={10.21437/Interspeech.2023-1176}
}
espnet_hubert_custom
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This entry expects you to provide the source of the checkpoint: :code:`ckpt`, which should be
the local path of the checkpoint pretrained from ESPnet (e.g., latest.pth).
espnet_hubert_base_iter0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: LibriSpeech 960hr (first iteration of HuBERT pre-training)
espnet_hubert_base_iter1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: LibriSpeech 960hr (second iteration of HuBERT pre-training)
espnet_hubert_large_gs_ll60k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: LibriLight ll60k hours
- Labeled Speech: GigaSpeech 10k hours (to get units)
WavLabLM
----------------------
`Joint Prediction and Denoising for Large-scale Multilingual Self-supervised Learning <https://arxiv.org/abs/2309.15317>`_
.. code-block:: bash
@inproceedings{chen23joint,
author={William Chen and Jiatong Shi and Brian Yan and Dan Berrebbi and Wangyou Zhang and Yifan Peng and Xuankai Chang and Soumi Maiti and Shinji Watanabe},
title={Joint Prediction and Denoising for Large-scale Multilingual Self-supervised Learning},
year=2023,
booktitle={IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)},
}
cvhubert
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: Commonvoice V11 Multilingual Data (13.6k hours)
- only 20ms resolution version is provided. `check huggingface for other resolutions <https://huggingface.co/espnet/espnet_cvhubert/tree/main>`_
wavlablm_ek_40k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: Openli110 (Combination of Commonvoice, Voxpopuli, MLS, Googlei18n, around 39k hours)
- Initialed from hubert_large_ll60k and continue train with English based k-means from librispeech
wavlablm_mk_40k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: Openli110 (Combination of Commonvoice, Voxpopuli, MLS, Googlei18n, around 39k hours)
- Trained from scratch and use a multilingual k-means from the training data
wavlablm_ms_40k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: Openli110 (Combination of Commonvoice, Voxpopuli, MLS, Googlei18n, around 39k hours)
- Trained from scratch and use a multilingual k-means from the training data with a multi-stage training
Multiresolution HuBERT (MR-HuBERT)
----------------------
`Multi-resolution HuBERT: Multi-resolution Speech Self-Supervised Learning with Masked Unit Prediction <https://openreview.net/pdf?id=kUuKFW7DIF>`_
.. code-block:: bash
@inproceedings{anonymous2023multiresolution,
title={Multi-resolution Hu{BERT}: Multi-resolution Speech Self-Supervised Learning with Masked Unit Prediction},
author={Anonymous},
booktitle={Submitted to The Twelfth International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=kUuKFW7DIF},
note={under review}
}
multires_hubert_custom
~~~~~~~~~~~~~~~~~~~~~
This entry expects you to provide the source of the checkpoint: :code:`ckpt`, which should be
the local path or a url of the checkpoint converted by :code:`s3prl/upstream/multires_hubert/convert.py` (
from a regular fairseq checkpoint.)
For more available checkpoints, please check `Fairseq official release <https://github.com/facebookresearch/fairseq/blob/main/examples/mr_hubert/README.md>`_
Related converted checkpoints are also at `S3PRL HuggingFace Repo <https://huggingface.co/s3prl/mr_hubert>`_
multires_hubert_base
~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
- K-means extracted from `hubert_base`_
multires_hubert_large
~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: LibriLight 60khr
- K-means extracted from `hubert_base`_
multires_hubert_multilingual_base
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: Voxpopuli 100khr
- K-means extracted from `hubert_base`_
multires_hubert_multilingual_large400k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: Voxpopuli 100khr
- K-means extracted from `hubert_base`_
- Training steps 400k
multires_hubert_multilingual_large600k
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Unlabeled Speech: Voxpopuli 100khr
- K-means extracted from `hubert_base`_
- Training steps 600k
DistilHuBERT
----------------------
`DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT <https://arxiv.org/abs/2110.01900>`_
.. code-block:: bash
@inproceedings{chang2022distilhubert,
title={DistilHuBERT: Speech representation learning by layer-wise distillation of hidden-unit BERT},
author={Chang, Heng-Jui and Yang, Shu-wen and Lee, Hung-yi},
booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7087--7091},
year={2022},
organization={IEEE}
}
distilhubert
~~~~~~~~~~~~~~~~~~~~~
Alias of `distilhubert_base`_
distilhubert_base
~~~~~~~~~~~~~~~~~~~~~
- Teacher: `hubert_base`_
- Unlabled Speech: LibriSpeech 960hr
HuBERT-MGR
--------------------------------------------------
`Improving Distortion Robustness of Self-supervised Speech Processing Tasks with Domain Adaptation <https://arxiv.org/abs/2203.16104>`_
.. code-block:: bash
@article{huang2022improving,
title={Improving Distortion Robustness of Self-supervised Speech Processing Tasks with Domain Adaptation},
author={Huang, Kuan Po and Fu, Yu-Kuan and Zhang, Yu and Lee, Hung-yi},
journal={arXiv preprint arXiv:2203.16104},
year={2022}
}
hubert_base_robust_mgr
~~~~~~~~~~~~~~~~~~~~~~~
- Unlabled Speech: LibriSpeech 960hr
- Augmentation: MUSAN, gaussian, reverberation
Unispeech-SAT
--------------------------------------------------
`Unispeech-sat: Universal speech representation learning with speaker aware pre-training <https://arxiv.org/abs/2110.05752>`_
.. code-block:: bash
@inproceedings{chen2022unispeech,
title={Unispeech-sat: Universal speech representation learning with speaker aware pre-training},
author={Chen, Sanyuan and Wu, Yu and Wang, Chengyi and Chen, Zhengyang and Chen, Zhuo and Liu, Shujie and Wu, Jian and Qian, Yao and Wei, Furu and Li, Jinyu and others},
booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={6152--6156},
year={2022},
organization={IEEE}
}
unispeech_sat
~~~~~~~~~~~~~~~~~~~~~
Alias of `unispeech_sat_base`_
unispeech_sat_base
~~~~~~~~~~~~~~~~~~~~~~
- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriSpeech 960 hours
unispeech_sat_base_plus
~~~~~~~~~~~~~~~~~~~~~~~~~~
- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours
unispeech_sat_large
~~~~~~~~~~~~~~~~~~~~~~~~
- Model Architecture: 24 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours
WavLM
--------------------------------------------------
`WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing <https://arxiv.org/abs/2110.13900>`_
.. code-block:: bash
@article{Chen2021WavLM,
title = {WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing},
author = {Sanyuan Chen and Chengyi Wang and Zhengyang Chen and Yu Wu and Shujie Liu and Zhuo Chen and Jinyu Li and Naoyuki Kanda and Takuya Yoshioka and Xiong Xiao and Jian Wu and Long Zhou and Shuo Ren and Yanmin Qian and Yao Qian and Jian Wu and Michael Zeng and Furu Wei},
eprint={2110.13900},
archivePrefix={arXiv},
primaryClass={cs.CL},
year={2021}
}
wavlm
~~~~~~~~~~~~~~~~~
Alias of `wavlm_base_plus`_
wavlm_base
~~~~~~~~~~~~~~~~
- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriSpeech 960 hours
wavlm_base_plus
~~~~~~~~~~~~~~~~~~~~~
- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours
wavlm_large
~~~~~~~~~~~~~~~~~~~~~
- Model Architecture: 24 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours + Gigaspeech 10k hours + VoxPopuli 24k hours = 94k hours
data2vec
--------------------------------------------------
`data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language <https://arxiv.org/abs/2202.03555>`_
.. code-block:: bash
@article{baevski2022data2vec,
title={Data2vec: A general framework for self-supervised learning in speech, vision and language},
author={Baevski, Alexei and Hsu, Wei-Ning and Xu, Qiantong and Babu, Arun and Gu, Jiatao and Auli, Michael},
journal={arXiv preprint arXiv:2202.03555},
year={2022}
}
data2vec
~~~~~~~~~~~~~~~~~
Alias of `data2vec_base_960`_
data2vec_base_960
~~~~~~~~~~~~~~~~~~
- Model Architecture: 12 layers Transformer blocks
- Unlabled Speech: LibriSpeech 960 hours
data2vec_large_ll60k
~~~~~~~~~~~~~~~~~~~~~
- Model Architecture: 24 layers Transformer blocks
- Unlabled Speech: LibriLight 60k hours
AST
--------------------------------------------------
`AST: Audio Spectrogram Transformer <https://arxiv.org/abs/2104.01778>`_
.. code-block:: bash
@article{gong2021ast,
title={Ast: Audio spectrogram transformer},
author={Gong, Yuan and Chung, Yu-An and Glass, James},
journal={arXiv preprint arXiv:2104.01778},
year={2021}
}
All the entries below support the following :code:`extra_conf`:
==================== ====================
column description
==================== ====================
window_secs (float) -
The segment waveform length to feed into the
AST model. If the input waveform is longer than this
length, do sliding windowing on the waveform and concat
the results along the time axis.
stride_secs (float) -
When doing sliding window on the waveform (see
above), the stride seconds between windows.
==================== ====================
ast
~~~~~~~~~~~~~~~~~~
- Labeled Data: AudioSet
SSAST
--------------------------------------------------
`SSAST: Self-Supervised Audio Spectrogram Transformer <https://arxiv.org/abs/2110.09784>`_
.. code-block:: bash
@inproceedings{gong2022ssast,
title={Ssast: Self-supervised audio spectrogram transformer},
author={Gong, Yuan and Lai, Cheng-I and Chung, Yu-An and Glass, James},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={36},
number={10},
pages={10699--10709},
year={2022}
}
All the entries below support the following :code:`extra_conf`:
==================== ====================
column description
==================== ====================
window_secs (float) -
The segment waveform length to feed into the
AST model. If the input waveform is longer than this
length, do sliding windowing on the waveform and concat
the results along the time axis.
==================== ====================
ssast_frame_base
~~~~~~~~~~~~~~~~~~
- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 128 (freq) * 2 (time)
ssast_patch_base
~~~~~~~~~~~~~~~~~~~
- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 16 (freq) * 16 (time)
MAE-AST
--------------------------------------------------
`MAE-AST: Masked Autoencoding Audio Spectrogram Transformer <https://arxiv.org/abs/2203.16691>`_
.. code-block:: bash
@article{baade2022mae,
title={MAE-AST: Masked Autoencoding Audio Spectrogram Transformer},
author={Baade, Alan and Peng, Puyuan and Harwath, David},
journal={arXiv preprint arXiv:2203.16691},
year={2022}
}
mae_ast_frame
~~~~~~~~~~~~~~~~~~
- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 128 (freq) * 2 (time)
mae_ast_patch
~~~~~~~~~~~~~~~~~~
- Unlabled Data: LibriSpeech & AudioSet
- fbank patch size: 16 (freq) * 16 (time)
Byol-A
--------------------------------------------------
`BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation <https://arxiv.org/abs/2103.06695>`_
.. code-block:: bash
@inproceedings{niizumi2021byol,
title={BYOL for audio: Self-supervised learning for general-purpose audio representation},
author={Niizumi, Daisuke and Takeuchi, Daiki and Ohishi, Yasunori and Harada, Noboru and Kashino, Kunio},
booktitle={2021 International Joint Conference on Neural Networks (IJCNN)},
pages={1--8},
year={2021},
organization={IEEE}
}
All the entries below support the following :code:`extra_conf`:
==================== ====================
column description
==================== ====================
window_secs (float) -
The segment waveform length to feed into the
AST model. If the input waveform is longer than this
length, do sliding windowing on the waveform and concat
the results along the time axis.
stride_secs (float) -
When doing sliding window on the waveform (see
above), the stride seconds between windows.
==================== ====================
byol_a_2048
~~~~~~~~~~~~~~~~~~
- Unlabled Data: AudioSet
byol_a_1024
~~~~~~~~~~~~~~~~~~
- Unlabled Data: AudioSet
byol_a_512
~~~~~~~~~~~~~~~~~~
- Unlabled Data: AudioSet
Byol-S
--------------------------------------------------
`BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping <https://arxiv.org/abs/2206.12038>`_
.. code-block:: bash
@article{elbanna2022byol,
title={Byol-s: Learning self-supervised speech representations by bootstrapping},
author={Elbanna, Gasser and Scheidwasser-Clow, Neil and Kegler, Mikolaj and Beckmann, Pierre and Hajal, Karl El and Cernak, Milos},
journal={arXiv preprint arXiv:2206.12038},
year={2022}
}
byol_s_default
~~~~~~~~~~~~~~~~~~
- Unlabled Data: AudioSet (Speech subset)
byol_s_cvt
~~~~~~~~~~~~~~~~~~
- Unlabled Data: AudioSet (Speech subset)
byol_s_resnetish34
~~~~~~~~~~~~~~~~~~
- Unlabled Data: AudioSet (Speech subset)
VGGish
--------------------------------------------------
`CNN Architectures for Large-Scale Audio Classification <https://arxiv.org/abs/1609.09430>`_
.. code-block:: bash
@inproceedings{hershey2017cnn,
title={CNN architectures for large-scale audio classification},
author={Hershey, Shawn and Chaudhuri, Sourish and Ellis, Daniel PW and Gemmeke, Jort F and Jansen, Aren and Moore, R Channing and Plakal, Manoj and Platt, Devin and Saurous, Rif A and Seybold, Bryan and others},
booktitle={2017 ieee international conference on acoustics, speech and signal processing (icassp)},
pages={131--135},
year={2017},
organization={IEEE}
}
vggish
~~~~~~~~~~~~~~~~~~
- Labaled Data: AudioSet
PaSST
--------------------------------------------------
`Efficient Training of Audio Transformers with Patchout <https://arxiv.org/abs/2110.05069>`_
.. code-block:: bash
@article{koutini2021efficient,
title={Efficient training of audio transformers with patchout},
author={Koutini, Khaled and Schl{\"u}ter, Jan and Eghbal-zadeh, Hamid and Widmer, Gerhard},
journal={arXiv preprint arXiv:2110.05069},
year={2021}
}
All the entries below support the following :code:`extra_conf`:
==================== ====================
column description
==================== ====================
window_secs (float) -
The segment waveform length to feed into the
model. If the input waveform is longer than this
length, do sliding windowing on the waveform and concat
the results along the time axis.
stride_secs (float) -
When doing sliding window on the waveform (see
above), the stride seconds between windows.
==================== ====================
passt_base
~~~~~~~~~~~~~~~~~~
- Labaled Data: AudioSet
Authors:
- Leo 2022
|