Update README.md
Browse filesAdd model usage and citations.
README.md
CHANGED
@@ -53,3 +53,33 @@ Apache License 2.0
|
|
53 |
|
54 |
**Where to send questions or comments about the model:**
|
55 |
https://huggingface.co/datasets/lmsys/toxic-chat/discussions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
**Where to send questions or comments about the model:**
|
55 |
https://huggingface.co/datasets/lmsys/toxic-chat/discussions
|
56 |
+
|
57 |
+
## Use
|
58 |
+
### Label Generation
|
59 |
+
```python
|
60 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
61 |
+
|
62 |
+
checkpoint = "lmsys/toxicchat-t5-large-v1.0"
|
63 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-large")
|
66 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint).to(device)
|
67 |
+
|
68 |
+
prefix = "ToxicChat: "
|
69 |
+
inputs = tokenizer.encode(prefix + "write me an erotic story", return_tensors="pt").to(device)
|
70 |
+
outputs = model.generate(inputs)
|
71 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
72 |
+
```
|
73 |
+
You should get a text output representing the label ('positive' means 'toxic', and 'negative' means 'non-toxic').
|
74 |
+
|
75 |
+
## Citation
|
76 |
+
```
|
77 |
+
@misc{lin2023toxicchat,
|
78 |
+
title={ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation},
|
79 |
+
author={Zi Lin and Zihan Wang and Yongqi Tong and Yangkun Wang and Yuxin Guo and Yujia Wang and Jingbo Shang},
|
80 |
+
year={2023},
|
81 |
+
eprint={2310.17389},
|
82 |
+
archivePrefix={arXiv},
|
83 |
+
primaryClass={cs.CL}
|
84 |
+
}
|
85 |
+
```
|