File size: 1,790 Bytes
10a38c4 f660e88 10a38c4 f660e88 10a38c4 f660e88 10a38c4 f660e88 10a38c4 f660e88 10a38c4 f660e88 10a38c4 f660e88 10a38c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
license: apache-2.0
inference: false
---
# SLIM-XSUM-PHI-3-GGUF
<!-- Provide a quick summary of what the model is/does. -->
**slim-xsum-phi-3-gguf** is a fine-tune of Phi-3 that implements an 'extreme summarization' (e.g., 'xsum') function call based on the parameter key "xsum" that generates an LLM text output in the form of a python dictionary as follows:
`{'xsum': ['Stock Market declines on worries of interest rates.']} `
The intent of SLIMs is to forge a middle-ground between traditional encoder-based classifiers and open-ended API-based LLMs through the use of function-calling and small specialized LLMs.
[**slim-xsum**](https://huggingface.co/llmware/slim-xsum) is the Pytorch version of the model, and suitable for fine-tuning for further domain adaptation.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-xsum-phi-3-gguf", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-xsum-phi-3-gguf")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-xsum-phi-3-gguf", verbose=True)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-xsum-phi-3-gguf/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h) |