File size: 1,790 Bytes
10a38c4
f660e88
 
10a38c4
 
f660e88
10a38c4
 
 
 
f660e88
10a38c4
 
 
 
 
 
 
 
 
 
 
f660e88
10a38c4
 
 
 
 
 
 
f660e88
10a38c4
 
 
f660e88
10a38c4
 
f660e88
10a38c4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0  
inference: false
---

# SLIM-XSUM-PHI-3-GGUF

<!-- Provide a quick summary of what the model is/does. -->


**slim-xsum-phi-3-gguf** is a fine-tune of Phi-3 that implements an 'extreme summarization' (e.g., 'xsum') function call based on the parameter key "xsum" that generates an LLM text output in the form of a python dictionary as follows:  

     `{'xsum': ['Stock Market declines on worries of interest rates.']} `  
     
The intent of SLIMs is to forge a middle-ground between traditional encoder-based classifiers and open-ended API-based LLMs through the use of function-calling and small specialized LLMs.  

[**slim-xsum**](https://huggingface.co/llmware/slim-xsum) is the Pytorch version of the model, and suitable for fine-tuning for further domain adaptation.


To pull the model via API:  

    from huggingface_hub import snapshot_download           
    snapshot_download("llmware/slim-xsum-phi-3-gguf", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  
    

Load in your favorite GGUF inference engine, or try with llmware as follows:

    from llmware.models import ModelCatalog  
    
    # to load the model and make a basic inference
    model = ModelCatalog().load_model("slim-xsum-phi-3-gguf")
    response = model.function_call(text_sample)  

    # this one line will download the model and run a series of tests
    ModelCatalog().tool_test_run("slim-xsum-phi-3-gguf", verbose=True)  


Note: please review [**config.json**](https://huggingface.co/llmware/slim-xsum-phi-3-gguf/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.  


## Model Card Contact

Darren Oberst & llmware team  

[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)