doberst commited on
Commit
27ce6ca
·
verified ·
1 Parent(s): 48b59db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -1,29 +1,29 @@
1
  ---
2
- license: llama3
3
  inference: false
4
  tags:
5
  - green
6
- - p8
7
  - llmware-chat
8
  - ov
9
  ---
10
 
11
- # llama-3.1-instruct-ov
12
 
13
- **llama-3.1-instruct-ov-ov** is an OpenVino int4 quantized version of Llama 3.1 Instruct, providing a very fast inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
14
 
15
- [**llama-3.1-instruct**](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) is a leading open source general foundation model from Meta.
16
 
17
 
18
  ### Model Description
19
 
20
  - **Developed by:** meta-llama
21
  - **Quantized by:** llmware
22
- - **Model type:** llama-3.1
23
- - **Parameters:** 8 billion
24
- - **Model Parent:** meta-llama/Meta-Llama-3.1-8B-Instruct
25
  - **Language(s) (NLP):** English
26
- - **License:** Llama 3.1 Community License
27
  - **Uses:** General chat use cases
28
  - **RAG Benchmark Accuracy Score:** NA
29
  - **Quantization:** int4
 
1
  ---
2
+ license: llama3.2
3
  inference: false
4
  tags:
5
  - green
6
+ - p1
7
  - llmware-chat
8
  - ov
9
  ---
10
 
11
+ # llama-3.2-1b-instruct-ov
12
 
13
+ **llama-3.2-1b-instruct-ov** is an OpenVino int4 quantized version of Llama 3.2 1B Instruct, providing a very small, very fast inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
14
 
15
+ [**llama-3.2-1b-instruct**](https://huggingface.co/meta-llama/Meta-Llama-3.2-1B-Instruct) is a leading open source general foundation model from Meta.
16
 
17
 
18
  ### Model Description
19
 
20
  - **Developed by:** meta-llama
21
  - **Quantized by:** llmware
22
+ - **Model type:** llama-3.2
23
+ - **Parameters:** 1 billion
24
+ - **Model Parent:** meta-llama/Meta-Llama-3.2-1B-Instruct
25
  - **Language(s) (NLP):** English
26
+ - **License:** Llama 3.2 Community License
27
  - **Uses:** General chat use cases
28
  - **RAG Benchmark Accuracy Score:** NA
29
  - **Quantization:** int4