File size: 28,307 Bytes
4bfc69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:156
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What concerns do some people have regarding the value and impact
    of LLMs?
  sentences:
  - 'I think people who complain that LLM improvement has slowed are often missing
    the enormous advances in these multi-modal models. Being able to run prompts against
    images (and audio and video) is a fascinating new way to apply these models.

    Voice and live camera mode are science fiction come to life

    The audio and live video modes that have started to emerge deserve a special mention.

    The ability to talk to ChatGPT first arrived in September 2023, but it was mostly
    an illusion: OpenAI used their excellent Whisper speech-to-text model and a new
    text-to-speech model (creatively named tts-1) to enable conversations with the
    ChatGPT mobile apps, but the actual model just saw text.'
  - 'So far, I think they’re a net positive. I’ve used them on a personal level to
    improve my productivity (and entertain myself) in all sorts of different ways.
    I think people who learn how to use them effectively can gain a significant boost
    to their quality of life.

    A lot of people are yet to be sold on their value! Some think their negatives
    outweigh their positives, some think they are all hot air, and some even think
    they represent an existential threat to humanity.

    They’re actually quite easy to build

    The most surprising thing we’ve learned about LLMs this year is that they’re actually
    quite easy to build.'
  - 'The GPT-4 barrier was comprehensively broken

    In my December 2023 review I wrote about how We don’t yet know how to build GPT-4—OpenAI’s
    best model was almost a year old at that point, yet no other AI lab had produced
    anything better. What did OpenAI know that the rest of us didn’t?

    I’m relieved that this has changed completely in the past twelve months. 18 organizations
    now have models on the Chatbot Arena Leaderboard that rank higher than the original
    GPT-4 from March 2023 (GPT-4-0314 on the board)—70 models in total.'
- source_sentence: What organizations have produced better-than-GPT-3 class models
    in the past year?
  sentences:
  - 'Here’s the sequel to this post: Things we learned about LLMs in 2024.

    Large Language Models

    In the past 24-36 months, our species has discovered that you can take a GIANT
    corpus of text, run it through a pile of GPUs, and use it to create a fascinating
    new kind of software.

    LLMs can do a lot of things. They can answer questions, summarize documents, translate
    from one language to another, extract information and even write surprisingly
    competent code.

    They can also help you cheat at your homework, generate unlimited streams of fake
    content and be used for all manner of nefarious purposes.'
  - 'A year ago, the only organization that had released a generally useful LLM was
    OpenAI. We’ve now seen better-than-GPT-3 class models produced by Anthropic, Mistral,
    Google, Meta, EleutherAI, Stability AI, TII in Abu Dhabi (Falcon), Microsoft Research,
    xAI, Replit, Baidu and a bunch of other organizations.

    The training cost (hardware and electricity) is still significant—initially millions
    of dollars, but that seems to have dropped to the tens of thousands already. Microsoft’s
    Phi-2 claims to have used “14 days on 96 A100 GPUs”, which works out at around
    $35,000 using current Lambda pricing.'
  - 'One way to think about these models is an extension of the chain-of-thought prompting
    trick, first explored in the May 2022 paper Large Language Models are Zero-Shot
    Reasoners.

    This is that trick where, if you get a model to talk out loud about a problem
    it’s solving, you often get a result which the model would not have achieved otherwise.

    o1 takes this process and further bakes it into the model itself. The details
    are somewhat obfuscated: o1 models spend “reasoning tokens” thinking through the
    problem that are not directly visible to the user (though the ChatGPT UI shows
    a summary of them), then outputs a final result.'
- source_sentence: What are AI agents commonly understood to be, according to the
    context provided?
  sentences:
  - 'Except... you can run generated code to see if it’s correct. And with patterns
    like ChatGPT Code Interpreter the LLM can execute the code itself, process the
    error message, then rewrite it and keep trying until it works!

    So hallucination is a much lesser problem for code generation than for anything
    else. If only we had the equivalent of Code Interpreter for fact-checking natural
    language!

    How should we feel about this as software engineers?

    On the one hand, this feels like a threat: who needs a programmer if ChatGPT can
    write code for you?'
  - 'A lot of people are excited about AI agents—an infuriatingly vague term that
    seems to be converging on “AI systems that can go away and act on your behalf”.
    We’ve been talking about them all year, but I’ve seen few if any examples of them
    running in production, despite lots of exciting prototypes.

    I think this is because of gullibility.

    Can we solve this? Honestly, I’m beginning to suspect that you can’t fully solve
    gullibility without achieving AGI. So it may be quite a while before those agent
    dreams can really start to come true!

    Code may be the best application

    Over the course of the year, it’s become increasingly clear that writing code
    is one of the things LLMs are most capable of.'
  - 'Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context
    lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable
    exception of Claude 2.1 which accepted 200,000. Today every serious provider has
    a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.'
- source_sentence: How can hobbyists create their own fine-tuned models?
  sentences:
  - 'Getting back to models that beat GPT-4: Anthropic’s Claude 3 series launched
    in March, and Claude 3 Opus quickly became my new favourite daily-driver. They
    upped the ante even more in June with the launch of Claude 3.5 Sonnet—a model
    that is still my favourite six months later (though it got a significant upgrade
    on October 22, confusingly keeping the same 3.5 version number. Anthropic fans
    have since taken to calling it Claude 3.6).'
  - 'Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context
    lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable
    exception of Claude 2.1 which accepted 200,000. Today every serious provider has
    a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.'
  - 'I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly great model)
    on my iPhone. You can install several different apps to get your own, local, completely
    private LLM. My own LLM project provides a CLI tool for running an array of different
    models via plugins.

    You can even run them entirely in your browser using WebAssembly and the latest
    Chrome!

    Hobbyists can build their own fine-tuned models

    I said earlier that building an LLM was still out of reach of hobbyists. That
    may be true for training from scratch, but fine-tuning one of those models is
    another matter entirely.'
- source_sentence: What is the significance of prompt engineering in DALL-E 3?
  sentences:
  - 'Now add a walrus: Prompt engineering in DALL-E 3

    32.8k

    41.2k



    Web LLM runs the vicuna-7b Large Language Model entirely in your browser, and
    it’s very impressive

    32.5k

    38.2k



    ChatGPT can’t access the internet, even though it really looks like it can

    30.5k

    34.2k



    Stanford Alpaca, and the acceleration of on-device large language model development

    29.7k

    35.7k



    Run Llama 2 on your own Mac using LLM and Homebrew

    27.9k

    33.6k



    Midjourney 5.1

    26.7k

    33.4k



    Think of language models like ChatGPT as a “calculator for words”

    25k

    31.8k



    Multi-modal prompt injection image attacks against GPT-4V

    23.7k

    27.4k'
  - "blogging\n            68\n\n\n            ai\n            1092\n\n\n        \
    \    generative-ai\n            937\n\n\n            llms\n            925\n\n\
    Next: Tom Scott, and the formidable power of escalating streaks\nPrevious: Last\
    \ weeknotes of 2023\n\n\n \n \n\n\nColophon\n©\n2002\n2003\n2004\n2005\n2006\n\
    2007\n2008\n2009\n2010\n2011\n2012\n2013\n2014\n2015\n2016\n2017\n2018\n2019\n\
    2020\n2021\n2022\n2023\n2024\n2025"
  - 'The environmental impact got much, much worse

    The much bigger problem here is the enormous competitive buildout of the infrastructure
    that is imagined to be necessary for these models in the future.

    Companies like Google, Meta, Microsoft and Amazon are all spending billions of
    dollars rolling out new datacenters, with a very material impact on the electricity
    grid and the environment. There’s even talk of spinning up new nuclear power stations,
    but those can take decades.

    Is this infrastructure necessary? DeepSeek v3’s $6m training cost and the continued
    crash in LLM prices might hint that it’s not. But would you want to be the big
    tech executive that argued NOT to build out this infrastructure only to be proven
    wrong in a few years’ time?'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.875
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.875
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9538662191964322
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9375
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9375
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("llm-wizard/legal-ft-v0")
# Run inference
sentences = [
    'What is the significance of prompt engineering in DALL-E 3?',
    'Now add a walrus: Prompt engineering in DALL-E 3\n32.8k\n41.2k\n\n\nWeb LLM runs the vicuna-7b Large Language Model entirely in your browser, and it’s very impressive\n32.5k\n38.2k\n\n\nChatGPT can’t access the internet, even though it really looks like it can\n30.5k\n34.2k\n\n\nStanford Alpaca, and the acceleration of on-device large language model development\n29.7k\n35.7k\n\n\nRun Llama 2 on your own Mac using LLM and Homebrew\n27.9k\n33.6k\n\n\nMidjourney 5.1\n26.7k\n33.4k\n\n\nThink of language models like ChatGPT as a “calculator for words”\n25k\n31.8k\n\n\nMulti-modal prompt injection image attacks against GPT-4V\n23.7k\n27.4k',
    'The environmental impact got much, much worse\nThe much bigger problem here is the enormous competitive buildout of the infrastructure that is imagined to be necessary for these models in the future.\nCompanies like Google, Meta, Microsoft and Amazon are all spending billions of dollars rolling out new datacenters, with a very material impact on the electricity grid and the environment. There’s even talk of spinning up new nuclear power stations, but those can take decades.\nIs this infrastructure necessary? DeepSeek v3’s $6m training cost and the continued crash in LLM prices might hint that it’s not. But would you want to be the big tech executive that argued NOT to build out this infrastructure only to be proven wrong in a few years’ time?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.875      |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.875      |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.875      |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.9539** |
| cosine_mrr@10       | 0.9375     |
| cosine_map@100      | 0.9375     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 156 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 156 samples:
  |         | sentence_0                                                                         | sentence_1                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 11 tokens</li><li>mean: 20.34 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 134.95 tokens</li><li>max: 214 tokens</li></ul> |
* Samples:
  | sentence_0                                                                             | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What model do I run on my iPhone?</code>                                         | <code>I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly great model) on my iPhone. You can install several different apps to get your own, local, completely private LLM. My own LLM project provides a CLI tool for running an array of different models via plugins.<br>You can even run them entirely in your browser using WebAssembly and the latest Chrome!<br>Hobbyists can build their own fine-tuned models<br>I said earlier that building an LLM was still out of reach of hobbyists. That may be true for training from scratch, but fine-tuning one of those models is another matter entirely.</code> |
  | <code>How can hobbyists create their own fine-tuned models?</code>                     | <code>I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly great model) on my iPhone. You can install several different apps to get your own, local, completely private LLM. My own LLM project provides a CLI tool for running an array of different models via plugins.<br>You can even run them entirely in your browser using WebAssembly and the latest Chrome!<br>Hobbyists can build their own fine-tuned models<br>I said earlier that building an LLM was still out of reach of hobbyists. That may be true for training from scratch, but fine-tuning one of those models is another matter entirely.</code> |
  | <code>What is the total cost to process 68,000 images mentioned in the context?</code> | <code>That’s a total cost of $1.68 to process 68,000 images. That’s so absurdly cheap I had to run the numbers three times to confirm I got it right.<br>How good are those descriptions? Here’s what I got from this command:<br>llm -m gemini-1.5-flash-8b-latest describe -a IMG_1825.jpeg</code>                                                                                                                                                                                                                                                                                                                                   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0   | 16   | 0.9638         |
| 2.0   | 32   | 0.9539         |
| 3.0   | 48   | 0.9539         |
| 3.125 | 50   | 0.9539         |
| 4.0   | 64   | 0.9539         |
| 5.0   | 80   | 0.9539         |
| 6.0   | 96   | 0.9539         |
| 6.25  | 100  | 0.9539         |
| 7.0   | 112  | 0.9539         |
| 8.0   | 128  | 0.9539         |
| 9.0   | 144  | 0.9539         |
| 9.375 | 150  | 0.9539         |
| 10.0  | 160  | 0.9539         |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->