mrehank209 commited on
Commit
8d8d852
·
verified ·
1 Parent(s): 03602ae

Upload PicoDecoderHF

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. config.json +22 -0
  3. model.safetensors +3 -0
  4. pico_decoder.py +608 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 3072,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 64,
13
+ "d_model": 768,
14
+ "max_seq_len": 128,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.51.0",
21
+ "vocab_size": 50304
22
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bee4b846dece95fa18cf458179c02088b8427b40d4fdcc65feb74f4376c2441
3
+ size 724393544
pico_decoder.py ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import PretrainedConfig, PreTrainedModel
35
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
36
+
37
+ try:
38
+ if TYPE_CHECKING:
39
+ # We need to do this to avoid importing these when creating the HF-compatible models
40
+ from src.config import ModelConfig
41
+ except ImportError:
42
+ pass
43
+
44
+ ########################################################
45
+ #
46
+ # Layer Normalization
47
+ #
48
+ ########################################################
49
+
50
+
51
+ class RMSNorm(torch.nn.Module):
52
+ """Root Mean Square Layer Normalization.
53
+
54
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
55
+ resulting in improved stability and performance.
56
+
57
+ Args:
58
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
59
+ - config.norm_eps: Small constant for numerical stability
60
+ - config.d_model: Model dimension for the weight parameter
61
+
62
+ References:
63
+ https://arxiv.org/abs/1910.07467
64
+ """
65
+
66
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
67
+ super().__init__()
68
+ self.eps = config.norm_eps
69
+ self.weight = nn.Parameter(torch.ones(config.d_model))
70
+
71
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
72
+ """
73
+ Normalizes the input tensor by its RMS value.
74
+ """
75
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ """
79
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
80
+ """
81
+ output = self._norm(x.float()).type_as(x)
82
+ return output * self.weight
83
+
84
+
85
+ ########################################################
86
+ #
87
+ # Positional Embedding
88
+ #
89
+ ########################################################
90
+
91
+
92
+ class RoPE(nn.Module):
93
+ """Rotary Positional Embeddings (RoPE).
94
+
95
+ Implements position-dependent rotation of keys and queries in attention mechanism,
96
+ allowing better modeling of relative positions in sequences. Uses complex number
97
+ operations for efficient rotation.
98
+
99
+ Args:
100
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
101
+ - config.position_emb_theta: Base for frequency computation
102
+ - config.d_model: Model dimension
103
+ - config.attention_n_heads: Number of attention heads
104
+ - config.max_seq_len: Maximum sequence length
105
+
106
+ References:
107
+ https://arxiv.org/abs/2104.09864
108
+ """
109
+
110
+ _freqs_cis_tensor: torch.Tensor | None = None
111
+
112
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
113
+ super().__init__()
114
+
115
+ self.theta = config.position_emb_theta
116
+ self.dim = config.d_model // config.attention_n_heads
117
+
118
+ max_seq_len = config.max_seq_len
119
+
120
+ # only gets set once, and then reused for all RoPE instances
121
+ if RoPE._freqs_cis_tensor is None:
122
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
123
+ max_seq_len, self.theta, self.dim
124
+ )
125
+
126
+ # register _freqs_cis buffer
127
+ # can be easily recomputed so persistent=False
128
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
129
+
130
+ @classmethod
131
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
132
+ """Setup Frequency Tensor for RoPE Embeddings
133
+
134
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
135
+
136
+ Note other implementations will use cos and sin directly, but using the complex
137
+ number representation is (probably?) more efficient:
138
+
139
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
140
+ """
141
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
142
+ positions = torch.arange(seq_len)
143
+ freqs = torch.outer(positions, _freqs)
144
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
145
+
146
+ def get_freqs_cis(
147
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
148
+ ) -> torch.Tensor:
149
+ """Reshape Frequency Tensor for RoPE Embeddings
150
+
151
+ Makes the frequency tensor broadcastable with the input tensor.
152
+ """
153
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
154
+ ndim = len(input_shape)
155
+ assert 0 <= 1 < ndim
156
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
157
+
158
+ # TODO: Check whether this is correct (might be able to remove this)
159
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
160
+ return _freqs_cis.view(*shape)
161
+
162
+ def forward(
163
+ self,
164
+ queries: torch.Tensor,
165
+ keys: torch.Tensor,
166
+ start_pos: int = 0,
167
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ """Apply RoPE Embeddings to Queries and Keys
169
+
170
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
171
+
172
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
173
+ """
174
+ queries_ = torch.view_as_complex(
175
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
176
+ )
177
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
178
+
179
+ input_shape = (
180
+ queries_.shape
181
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
182
+ freqs_start_pos = start_pos
183
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
184
+
185
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
186
+
187
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
188
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
189
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
190
+
191
+
192
+ ########################################################
193
+ #
194
+ # Attention
195
+ #
196
+ ########################################################
197
+
198
+
199
+ class Attention(nn.Module):
200
+ """Multi-head Attention with Group Query Attention support.
201
+
202
+ Implements scaled dot-product attention and supports:
203
+ - Grouped Query Attention (GQA)
204
+ - Key-Value caching for efficient inference
205
+ - RoPE integration
206
+
207
+ Args:
208
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
209
+ - config.attention_n_heads: Number of attention heads
210
+ - config.attention_n_kv_heads: Number of key/value heads
211
+ - config.d_model: Model dimension
212
+ - config.batch_size: Maximum batch size
213
+ - config.max_seq_len: Maximum sequence length
214
+
215
+ Shape:
216
+ - Input: (batch_size, seq_len, d_model)
217
+ - Output: (batch_size, seq_len, d_model)
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
223
+ ):
224
+ super().__init__()
225
+
226
+ self.n_heads = config.attention_n_heads
227
+ self.n_kv_heads = config.attention_n_kv_heads
228
+
229
+ self.batch_size = config.batch_size
230
+ self.max_seq_len = config.max_seq_len
231
+
232
+ d_model = config.d_model
233
+ self.head_dim = d_model // self.n_heads
234
+
235
+ self.n_rep = self.n_heads // self.n_kv_heads
236
+
237
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
238
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
239
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
241
+
242
+ self.rope = RoPE(config)
243
+
244
+ def forward(
245
+ self,
246
+ input: torch.Tensor,
247
+ mask: Optional[torch.Tensor] = None,
248
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
249
+ use_cache: bool = False,
250
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
251
+ """Forward pass for the attention mechanism.
252
+
253
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
254
+ embeddings to the queries and keys, and then computes attention scores and outputs.
255
+
256
+ For an introduction to the attention mechanism, see:
257
+ https://arxiv.org/abs/1706.03762
258
+
259
+ A few things to note:
260
+ - The past_key_values is used to implement the KV cache, which is used to speed up
261
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
262
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
263
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
264
+ its own KV cache - this KV cache is implemented as a tuple.
265
+ """
266
+ bsz, seq_len, _ = input.shape
267
+ _queries, _keys, _values = (
268
+ self.q_proj(input),
269
+ self.k_proj(input),
270
+ self.v_proj(input),
271
+ )
272
+
273
+ # Reshaping for multi-head attention
274
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
275
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
276
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+
278
+ # The start position is used to apply the RoPE embeddings to only the new tokens
279
+ # when using the kv_cache in the attention mechanism.
280
+ # We want to start from the last position in the cache.
281
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
282
+
283
+ # apply rotary positional embeddings
284
+ queries, keys = self.rope(queries, keys, start_pos)
285
+
286
+ if past_key_values is not None:
287
+ keys = torch.cat([past_key_values[0], keys], dim=1)
288
+ values = torch.cat([past_key_values[1], values], dim=1)
289
+
290
+ if use_cache:
291
+ cached_keys = keys
292
+ cached_values = values
293
+ else:
294
+ cached_keys = None
295
+ cached_values = None
296
+
297
+ queries = queries.transpose(1, 2)
298
+ keys = keys.transpose(1, 2)
299
+ values = values.transpose(1, 2)
300
+
301
+ apply_gqa = self.n_rep > 1
302
+ if apply_gqa and queries.device.type == "mps":
303
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
304
+ # outside of the kernel to get the same effect.
305
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
306
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
307
+ values = values.repeat_interleave(self.n_rep, dim=-3)
308
+ apply_gqa = False
309
+
310
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
311
+
312
+ with sdpa_kernel(backends=backends):
313
+ attn_output = F.scaled_dot_product_attention(
314
+ queries.contiguous(),
315
+ keys.contiguous(),
316
+ values.contiguous(),
317
+ attn_mask=mask.to(queries.dtype),
318
+ enable_gqa=apply_gqa,
319
+ )
320
+
321
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
322
+ output = self.o_proj(attn_output)
323
+
324
+ return output, (cached_keys, cached_values)
325
+
326
+
327
+ ########################################################
328
+ #
329
+ # SwiGLU (Combines MLP and Activation)
330
+ #
331
+ ########################################################
332
+
333
+
334
+ class SwiGLU(nn.Module):
335
+ """SwiGLU Activation Function with Linear Projections.
336
+
337
+ Implements the SwiGLU activation function combined with linear transformations,
338
+ serving as the feed-forward network in transformer blocks.
339
+
340
+ Args:
341
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
342
+ - config.d_model: Model dimension
343
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
344
+
345
+ References:
346
+ https://arxiv.org/abs/2002.05202
347
+ """
348
+
349
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
350
+ super().__init__()
351
+
352
+ model_dim = config.d_model
353
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
354
+
355
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
356
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
358
+
359
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
360
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
361
+
362
+
363
+ ########################################################
364
+ #
365
+ # PicoDecoderBlock
366
+ #
367
+ ########################################################
368
+
369
+
370
+ class PicoDecoderBlock(nn.Module):
371
+ """Single Transformer Block with Attention and Feed-forward layers.
372
+
373
+ Implements a standard transformer block with:
374
+ - Multi-head attention with normalization and residual connection
375
+ - SwiGLU feed-forward network with normalization and residual connection
376
+
377
+ Args:
378
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
379
+ a HuggingFace PicoDecoderHFConfig
380
+ """
381
+
382
+ def __init__(
383
+ self,
384
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
385
+ ):
386
+ super().__init__()
387
+
388
+ self.attention = Attention(config)
389
+ self.swiglu = SwiGLU(config)
390
+ self.attention_norm = RMSNorm(config)
391
+ self.swiglu_norm = RMSNorm(config)
392
+
393
+ def forward(
394
+ self,
395
+ input: torch.Tensor,
396
+ mask: Optional[torch.Tensor] = None,
397
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
398
+ use_cache: bool = False,
399
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
400
+ attention_output, cached_key_values = self.attention(
401
+ self.attention_norm(input),
402
+ mask=mask,
403
+ past_key_values=past_key_values,
404
+ use_cache=use_cache,
405
+ )
406
+ # NOTE: cached_key_values is None if use_cache is False
407
+
408
+ h = input + attention_output
409
+ out = h + self.swiglu(self.swiglu_norm(h))
410
+ return out, cached_key_values
411
+
412
+
413
+ ########################################################
414
+ #
415
+ # Pico Decoder (Causal Transformer Model)
416
+ #
417
+ ########################################################
418
+
419
+
420
+ class PicoDecoder(nn.Module):
421
+ """
422
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
423
+ single autoregressive model.
424
+
425
+ For more information on the model, see the classes for the modules that make up the model.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
431
+ ):
432
+ super().__init__()
433
+ self.config = model_config
434
+
435
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
436
+ self.layers = nn.ModuleList(
437
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
438
+ )
439
+ self.output_norm = RMSNorm(self.config)
440
+ self.de_embedding_proj = nn.Linear(
441
+ self.config.d_model, self.config.vocab_size, bias=False
442
+ )
443
+
444
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
445
+ """Convert the Lightning model to a HuggingFace model."""
446
+ # Create HF config without fabric-specific settings
447
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
448
+
449
+ # Create new HF model
450
+ hf_model = PicoDecoderHF(hf_config)
451
+
452
+ # Copy state dict, excluding fabric-specific keys
453
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
454
+
455
+ return hf_model
456
+
457
+ def forward(
458
+ self,
459
+ input_ids: torch.Tensor,
460
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
461
+ use_cache: bool = False,
462
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
463
+ """
464
+ This is the forward pass for the entire Pico model. It boils down to:
465
+ - Embedding the input ids
466
+ - Creating a causal mask
467
+ - Processing through the pico layers
468
+ - Projecting the output to logits
469
+
470
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
471
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
472
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
473
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
474
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
475
+ KV caches (so a tuple of tuples).
476
+ """
477
+
478
+ seq_len = input_ids.shape[-1]
479
+ h = self.embedding_proj(input_ids)
480
+
481
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
482
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
483
+ # correct layer and then for either the keys or values.
484
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
485
+
486
+ # Create causal mask for current sequence
487
+ mask = None
488
+ if seq_len > 1:
489
+ mask = torch.full((seq_len, seq_len), float("-inf"))
490
+ mask = torch.triu(mask, diagonal=1)
491
+
492
+ # If using KV cache, extend mask to cover cached sequence length
493
+ if past_key_values is not None:
494
+ # Add zeros for cached tokens (we can attend to all of them)
495
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
496
+
497
+ mask = mask.to(h.device)
498
+
499
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
500
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
501
+ cached_key_values = () if use_cache else None
502
+
503
+ # Process through transformer blocks
504
+ for idx, layer in enumerate(self.layers):
505
+ layer_past_key_values = (
506
+ past_key_values[idx] if past_key_values is not None else None
507
+ )
508
+
509
+ h, layer_cached_key_values = layer(
510
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
511
+ )
512
+
513
+ if use_cache:
514
+ cached_key_values += (layer_cached_key_values,)
515
+
516
+ # Final norm and projection
517
+ h = self.output_norm(h)
518
+ logits = self.de_embedding_proj(h).float()
519
+
520
+ return logits, cached_key_values
521
+
522
+
523
+ ########################################################
524
+ #
525
+ # HuggingFace Wrapper for the Pico Decoder model.
526
+ #
527
+ ########################################################
528
+
529
+
530
+ class PicoDecoderHFConfig(PretrainedConfig):
531
+ """Config class for the Pico Decoder HuggingFace wrapper."""
532
+
533
+ model_type = "pico_decoder"
534
+
535
+ @classmethod
536
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
537
+ """
538
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
539
+ this is because with some kwargs special handling is required and can make this class
540
+ brittle.
541
+ """
542
+ pico_config = cls(**config_dict)
543
+
544
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
545
+ unused_kwargs = {
546
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
547
+ }
548
+
549
+ if return_unused_kwargs:
550
+ return pico_config, unused_kwargs
551
+ return pico_config
552
+
553
+ @classmethod
554
+ def from_dataclass(cls, model_config: "ModelConfig"):
555
+ """Initialise from our custom config dataclass."""
556
+ return cls.from_dict(asdict(model_config))
557
+
558
+
559
+ class PicoDecoderHF(PreTrainedModel):
560
+ """
561
+ HuggingFace wrapper for the Pico model.
562
+
563
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
564
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
565
+ Pico model as well as the model wrapped in this HuggingFace class.
566
+
567
+ This also lets you do cool things like:
568
+
569
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
570
+ """
571
+
572
+ config_class = PicoDecoderHFConfig
573
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
574
+
575
+ def __init__(self, config: PicoDecoderHFConfig):
576
+ super().__init__(config)
577
+ self.pico_decoder = PicoDecoder(config)
578
+
579
+ def forward(
580
+ self,
581
+ input_ids: torch.Tensor,
582
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
583
+ use_cache: bool = False,
584
+ **kwargs,
585
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
586
+ """HuggingFace forward pass wrapper.
587
+
588
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
589
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
590
+ """
591
+ logits, past_key_values = self.pico_decoder(
592
+ input_ids, past_key_values, use_cache
593
+ )
594
+ if use_cache:
595
+ return CausalLMOutputWithPast(
596
+ logits=logits,
597
+ past_key_values=past_key_values,
598
+ )
599
+ else:
600
+ return CausalLMOutput(
601
+ logits=logits,
602
+ )
603
+
604
+
605
+ # Register for auto classes
606
+ PicoDecoderHFConfig.register_for_auto_class()
607
+ PicoDecoderHF.register_for_auto_class("AutoModel")
608
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")