Update README.md
Browse files
README.md
CHANGED
@@ -55,15 +55,19 @@ Checkpoints format: `transformers` (Megatron-DeepSpeed format available [here](h
|
|
55 |
|
56 |
```python
|
57 |
import torch
|
|
|
58 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
text = "自然言語処理とは何か"
|
62 |
text = text + "### 回答:"
|
63 |
-
tokenized_input = tokenizer
|
64 |
with torch.no_grad():
|
65 |
output = model.generate(
|
66 |
-
tokenized_input,
|
67 |
max_new_tokens=100,
|
68 |
do_sample=True,
|
69 |
top_p=0.95,
|
|
|
55 |
|
56 |
```python
|
57 |
import torch
|
58 |
+
from peft import PeftModel, PeftConfig
|
59 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
60 |
+
peft_model_name = "llm-jp/llm-jp-13b-instruct-lora-jaster-v1.0"
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_model_name)
|
62 |
+
config = PeftConfig.from_pretrained(peft_model_name)
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map="auto", torch_dtype=torch.float16)
|
64 |
+
model = PeftModel.from_pretrained(model, peft_model_name)
|
65 |
text = "自然言語処理とは何か"
|
66 |
text = text + "### 回答:"
|
67 |
+
tokenized_input = tokenizer(text, add_special_tokens=False, return_tensors="pt").to(model.device)
|
68 |
with torch.no_grad():
|
69 |
output = model.generate(
|
70 |
+
**tokenized_input,
|
71 |
max_new_tokens=100,
|
72 |
do_sample=True,
|
73 |
top_p=0.95,
|