cpu default, fix args
Browse files- custom_st.py +8 -19
custom_st.py
CHANGED
|
@@ -24,8 +24,10 @@ class Transformer(nn.Module):
|
|
| 24 |
max_seq_length: Optional[int] = None,
|
| 25 |
model_args: Optional[Dict[str, Any]] = None,
|
| 26 |
processor_args: Optional[Dict[str, Any]] = None,
|
|
|
|
|
|
|
| 27 |
cache_dir: Optional[str] = None,
|
| 28 |
-
device: str = '
|
| 29 |
backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
|
| 30 |
**kwargs,
|
| 31 |
) -> None:
|
|
@@ -54,24 +56,11 @@ class Transformer(nn.Module):
|
|
| 54 |
})
|
| 55 |
|
| 56 |
# Initialize model
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
device_map=device,
|
| 63 |
-
cache_dir=cache_dir,
|
| 64 |
-
**model_kwargs
|
| 65 |
-
).eval()
|
| 66 |
-
except (ImportError, ValueError) as e:
|
| 67 |
-
print(f"Flash attention not available, falling back to default attention: {e}")
|
| 68 |
-
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 69 |
-
model_name_or_path,
|
| 70 |
-
torch_dtype=torch.bfloat16,
|
| 71 |
-
device_map=device,
|
| 72 |
-
cache_dir=cache_dir,
|
| 73 |
-
**model_kwargs
|
| 74 |
-
).eval()
|
| 75 |
|
| 76 |
# Initialize processor
|
| 77 |
self.processor = AutoProcessor.from_pretrained(
|
|
|
|
| 24 |
max_seq_length: Optional[int] = None,
|
| 25 |
model_args: Optional[Dict[str, Any]] = None,
|
| 26 |
processor_args: Optional[Dict[str, Any]] = None,
|
| 27 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
| 28 |
+
config_args: Optional[Dict[str, Any]] = None,
|
| 29 |
cache_dir: Optional[str] = None,
|
| 30 |
+
device: str = 'cpu',
|
| 31 |
backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
|
| 32 |
**kwargs,
|
| 33 |
) -> None:
|
|
|
|
| 56 |
})
|
| 57 |
|
| 58 |
# Initialize model
|
| 59 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 60 |
+
model_name_or_path,
|
| 61 |
+
cache_dir=cache_dir,
|
| 62 |
+
**model_kwargs
|
| 63 |
+
).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Initialize processor
|
| 66 |
self.processor = AutoProcessor.from_pretrained(
|