--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Driectly Uses ``` from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline from peft import PeftModelForCausalLM from transformers import BitsAndBytesConfig base_model = "ljcnju/DeepSeek7bForCodeTrans" tokenzier = AutoTokenizer.from_pretrained(base_model) babcfig = BitsAndBytesConfig(load_in_8bit=True,llm_int8_enable_fp32_cpu_offload=True) basemodel = "deepseek-ai/deepseek-coder-6.7b-base" model = AutoModelForCausalLM.from_pretrained(basemodel, device_map = "cuda:0", quantization_config = babcfig) model.resize_token_embeddings(len(tokenzier)) model = PeftModelForCausalLM.from_pretrained(model,base_model) prompt = "<|translate|> public void removePresentationFormat() {remove1stProperty(PropertyIDMap.PID_PRESFORMAT);}\n<|end_of_c-sharp_code|><|begin_of_c-sharp_code|>" input = tokenzier(prompt,return_tensors="pt") output_ids = model.generate(**input) print(tokenzier.batch_decode(output_ids)) ``` ### Use with vLLM ``` from vllm import LLM, SamplingParams,EngineArgs, LLMEngine, RequestOutput from vllm.lora.request import LoRARequest engine_args = EngineArgs(model="deepseek-ai/deepseek-coder-6.7b-base", enable_lora=True, max_loras=1, max_lora_rank=8, max_cpu_loras=2, max_num_seqs=256, max_model_len= 512) engine = LLMEngine.from_engine_args(engine_args) lorarequest = LoRARequest("DeepSeek7bForCodeTrans",1,"ljcnju/DeepSeek7bForCodeTrans") engine.add_lora(lorarequest) additional_special_tokens = {'additional_special_tokens':['<|begin_of_java_code|>','<|end_of_java_code|>'\ ,'<|begin_of_c-sharp_code|>','<|end_of_c-sharp_code|>',\ '<|translate|>']} prompt = "public void serialize(LittleEndianOutput out) {out.writeShort(field_1_vcenter);}\n" prompt = additional_special_tokens['additional_special_tokens'][0] + prompt + additional_special_tokens['additional_special_tokens'][1] + additional_special_tokens['additional_special_tokens'][2] sampling_params = SamplingParams(temperature=0.1,max_tokens= 512,stop_token_ids=[32022,32014],skip_special_tokens=False) engine.add_request(str(1),prompt,sampling_params,lora_request=lorarequest) engine.step() real_output = "" finished = False while engine.has_unfinished_requests(): request_outputs = engine.step() for request_output in request_outputs: finished = finished | request_output.finished print(request_outputs[0].outputs[0].text) ``` [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]