Last commit not found
''' | |
v1 | |
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "E:\codes\py39\test-20230416b\weights\mi-test.pth" 0.66 cuda:0 True 3 0 1 0.33 | |
v2 | |
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\test-20230416b\logs\mi-test-v2\aadded_IVF677_Flat_nprobe_1_v2.index" harvest "test_v2.wav" "E:\codes\py39\test-20230416b\weights\mi-test-v2.pth" 0.66 cuda:0 True 3 0 1 0.33 | |
''' | |
import os,sys,pdb,torch | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import argparse | |
import glob | |
import sys | |
import torch | |
from multiprocessing import cpu_count | |
class Config: | |
def __init__(self,device,is_half): | |
self.device = device | |
self.is_half = is_half | |
self.n_cpu = 0 | |
self.gpu_name = None | |
self.gpu_mem = None | |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
def device_config(self) -> tuple: | |
if torch.cuda.is_available(): | |
i_device = int(self.device.split(":")[-1]) | |
self.gpu_name = torch.cuda.get_device_name(i_device) | |
if ( | |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
or "P40" in self.gpu_name.upper() | |
or "1060" in self.gpu_name | |
or "1070" in self.gpu_name | |
or "1080" in self.gpu_name | |
): | |
print("16系/10系显卡和P40强制单精度") | |
self.is_half = False | |
for config_file in ["32k.json", "40k.json", "48k.json"]: | |
with open(f"configs/{config_file}", "r") as f: | |
strr = f.read().replace("true", "false") | |
with open(f"configs/{config_file}", "w") as f: | |
f.write(strr) | |
with open("trainset_preprocess_pipeline_print.py", "r") as f: | |
strr = f.read().replace("3.7", "3.0") | |
with open("trainset_preprocess_pipeline_print.py", "w") as f: | |
f.write(strr) | |
else: | |
self.gpu_name = None | |
self.gpu_mem = int( | |
torch.cuda.get_device_properties(i_device).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
if self.gpu_mem <= 4: | |
with open("trainset_preprocess_pipeline_print.py", "r") as f: | |
strr = f.read().replace("3.7", "3.0") | |
with open("trainset_preprocess_pipeline_print.py", "w") as f: | |
f.write(strr) | |
elif torch.backends.mps.is_available(): | |
print("没有发现支持的N卡, 使用MPS进行推理") | |
self.device = "mps" | |
else: | |
print("没有发现支持的N卡, 使用CPU进行推理") | |
self.device = "cpu" | |
self.is_half = True | |
if self.n_cpu == 0: | |
self.n_cpu = cpu_count() | |
if self.is_half: | |
# 6G显存配置 | |
x_pad = 3 | |
x_query = 10 | |
x_center = 60 | |
x_max = 65 | |
else: | |
# 5G显存配置 | |
x_pad = 1 | |
x_query = 6 | |
x_center = 38 | |
x_max = 41 | |
if self.gpu_mem != None and self.gpu_mem <= 4: | |
x_pad = 1 | |
x_query = 5 | |
x_center = 30 | |
x_max = 32 | |
return x_pad, x_query, x_center, x_max | |
f0up_key=sys.argv[1] | |
input_path=sys.argv[2] | |
index_path=sys.argv[3] | |
f0method=sys.argv[4]#harvest or pm | |
opt_path=sys.argv[5] | |
model_path=sys.argv[6] | |
index_rate=float(sys.argv[7]) | |
device=sys.argv[8] | |
is_half=bool(sys.argv[9]) | |
filter_radius=int(sys.argv[10]) | |
resample_sr=int(sys.argv[11]) | |
rms_mix_rate=float(sys.argv[12]) | |
protect=float(sys.argv[13]) | |
print(sys.argv) | |
config=Config(device,is_half) | |
now_dir=os.getcwd() | |
sys.path.append(now_dir) | |
from vc_infer_pipeline import VC | |
from infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
from my_utils import load_audio | |
from fairseq import checkpoint_utils | |
from scipy.io import wavfile | |
hubert_model=None | |
def load_hubert(): | |
global hubert_model | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(device) | |
if(is_half):hubert_model = hubert_model.half() | |
else:hubert_model = hubert_model.float() | |
hubert_model.eval() | |
def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate): | |
global tgt_sr,net_g,vc,hubert_model,version | |
if input_audio is None:return "You need to upload an audio", None | |
f0_up_key = int(f0_up_key) | |
audio=load_audio(input_audio,16000) | |
times = [0, 0, 0] | |
if(hubert_model==None):load_hubert() | |
if_f0 = cpt.get("f0", 1) | |
# audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file) | |
audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius,tgt_sr,resample_sr,rms_mix_rate,version,protect,f0_file=f0_file) | |
print(times) | |
return audio_opt | |
def get_vc(model_path): | |
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half,version | |
print("loading pth %s"%model_path) | |
cpt = torch.load(model_path, map_location="cpu") | |
tgt_sr = cpt["config"][-1] | |
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk | |
if_f0=cpt.get("f0",1) | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif version == "v2": | |
if if_f0 == 1:# | |
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
del net_g.enc_q | |
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩 | |
net_g.eval().to(device) | |
if (is_half):net_g = net_g.half() | |
else:net_g = net_g.float() | |
vc = VC(tgt_sr, config) | |
n_spk=cpt["config"][-3] | |
# return {"visible": True,"maximum": n_spk, "__type__": "update"} | |
get_vc(model_path) | |
wav_opt=vc_single(0,input_path,f0up_key,None,f0method,index_path,index_rate) | |
wavfile.write(opt_path, tgt_sr, wav_opt) | |