Last commit not found
import os,sys,torch,warnings,pdb | |
warnings.filterwarnings("ignore") | |
import librosa | |
import importlib | |
import numpy as np | |
import hashlib , math | |
from tqdm import tqdm | |
from uvr5_pack.lib_v5 import spec_utils | |
from uvr5_pack.utils import _get_name_params,inference | |
from uvr5_pack.lib_v5.model_param_init import ModelParameters | |
from scipy.io import wavfile | |
class _audio_pre_(): | |
def __init__(self, model_path,device,is_half): | |
self.model_path = model_path | |
self.device = device | |
self.data = { | |
# Processing Options | |
'postprocess': False, | |
'tta': False, | |
# Constants | |
'window_size': 512, | |
'agg': 10, | |
'high_end_process': 'mirroring', | |
} | |
nn_arch_sizes = [ | |
31191, # default | |
33966,61968, 123821, 123812, 537238 # custom | |
] | |
self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes) | |
model_size = math.ceil(os.stat(model_path ).st_size / 1024) | |
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size))) | |
nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None) | |
model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest() | |
param_name ,model_params_d = _get_name_params(model_path , model_hash) | |
mp = ModelParameters(model_params_d) | |
model = nets.CascadedASPPNet(mp.param['bins'] * 2) | |
cpk = torch.load( model_path , map_location='cpu') | |
model.load_state_dict(cpk) | |
model.eval() | |
if(is_half==True):model = model.half().to(device) | |
else:model = model.to(device) | |
self.mp = mp | |
self.model = model | |
def _path_audio_(self, music_file ,ins_root=None,vocal_root=None): | |
if(ins_root is None and vocal_root is None):return "No save root." | |
name=os.path.basename(music_file) | |
if(ins_root is not None):os.makedirs(ins_root, exist_ok=True) | |
if(vocal_root is not None):os.makedirs(vocal_root , exist_ok=True) | |
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} | |
bands_n = len(self.mp.param['band']) | |
# print(bands_n) | |
for d in range(bands_n, 0, -1): | |
bp = self.mp.param['band'][d] | |
if d == bands_n: # high-end band | |
X_wave[d], _ = librosa.core.load( | |
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) | |
if X_wave[d].ndim == 1: | |
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) | |
else: # lower bands | |
X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) | |
# Stft of wave source | |
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse']) | |
# pdb.set_trace() | |
if d == bands_n and self.data['high_end_process'] != 'none': | |
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + ( self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start']) | |
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :] | |
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) | |
aggresive_set = float(self.data['agg']/100) | |
aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']} | |
with torch.no_grad(): | |
pred, X_mag, X_phase = inference(X_spec_m,self.device,self.model, aggressiveness,self.data) | |
# Postprocess | |
if self.data['postprocess']: | |
pred_inv = np.clip(X_mag - pred, 0, np.inf) | |
pred = spec_utils.mask_silence(pred, pred_inv) | |
y_spec_m = pred * X_phase | |
v_spec_m = X_spec_m - y_spec_m | |
if (ins_root is not None): | |
if self.data['high_end_process'].startswith('mirroring'): | |
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp) | |
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp,input_high_end_h, input_high_end_) | |
else: | |
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) | |
print ('%s instruments done'%name) | |
wavfile.write(os.path.join(ins_root, 'instrument_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype("int16")) # | |
if (vocal_root is not None): | |
if self.data['high_end_process'].startswith('mirroring'): | |
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp) | |
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_) | |
else: | |
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) | |
print ('%s vocals done'%name) | |
wavfile.write(os.path.join(vocal_root , 'vocal_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype("int16")) | |
if __name__ == '__main__': | |
device = 'cuda' | |
is_half=True | |
model_path='uvr5_weights/2_HP-UVR.pth' | |
pre_fun = _audio_pre_(model_path=model_path,device=device,is_half=True) | |
audio_path = '神女劈观.aac' | |
save_path = 'opt' | |
pre_fun._path_audio_(audio_path , save_path,save_path) | |