Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- yueqingyou/BioQwen
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
tags:
|
9 |
+
- BioQwen
|
10 |
+
- 0.5B
|
11 |
+
- Biomedical
|
12 |
+
- Multi-Tasks
|
13 |
+
---
|
14 |
+
|
15 |
+
# BioQwen: A Small-Parameter, High-Performance Bilingual Model for Biomedical Multi-Tasks
|
16 |
+
|
17 |
+
For model inference, please refer to the following example code:
|
18 |
+
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
import transformers
|
22 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
23 |
+
|
24 |
+
transformers.logging.set_verbosity_error()
|
25 |
+
max_length = 512
|
26 |
+
model_path = 'yueqingyou/BioQwen-0.5B'
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto', torch_dtype=torch.bfloat16, attn_implementation='flash_attention_2').eval()
|
29 |
+
|
30 |
+
def predict(prompt):
|
31 |
+
zh_system = "你是千问生物智能助手,一个专注于生物领域的先进人工智能。"
|
32 |
+
en_system = "You are BioQwen, an advanced AI specializing in the field of biology."
|
33 |
+
|
34 |
+
english_count, chinese_count = 0, 0
|
35 |
+
for char in prompt:
|
36 |
+
if '\u4e00' <= char <= '\u9fff':
|
37 |
+
chinese_count += 1
|
38 |
+
elif 'a' <= char.lower() <= 'z':
|
39 |
+
english_count += 1
|
40 |
+
lang = 'zh' if chinese_count > english_count else 'en'
|
41 |
+
|
42 |
+
messages = [
|
43 |
+
{"role": "system", "content": zh_system if lang == 'zh' else en_system},
|
44 |
+
{"role": "user", "content": prompt}
|
45 |
+
]
|
46 |
+
text = tokenizer.apply_chat_template(
|
47 |
+
messages,
|
48 |
+
tokenize=False,
|
49 |
+
add_generation_prompt=True
|
50 |
+
)
|
51 |
+
|
52 |
+
model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
generated_ids = model.generate(
|
56 |
+
model_inputs.input_ids,
|
57 |
+
max_new_tokens=max_length,
|
58 |
+
eos_token_id=tokenizer.eos_token_id,
|
59 |
+
pad_token_id=tokenizer.pad_token_id,
|
60 |
+
do_sample=True,
|
61 |
+
top_p = 0.9,
|
62 |
+
temperature = 0.3,
|
63 |
+
repetition_penalty = 1.1
|
64 |
+
)
|
65 |
+
|
66 |
+
generated_ids = [
|
67 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
68 |
+
]
|
69 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
70 |
+
|
71 |
+
return response.strip()
|
72 |
+
|
73 |
+
prompt = 'I am suffering from irregular periods. I am currently taking medication Levothyroxine 50. My T3 is 0.87 ng/mL, T4 is 8.30 ug/dL, TSH is 2.43 uIU/mL. I am 34 years old, weigh 75 kg, and 5 feet tall. Please advice.'
|
74 |
+
print(f'Question:\t{prompt}\n\nAnswer:\t{predict(prompt)}')
|
75 |
+
|
76 |
+
```
|
77 |
+
|
78 |
+
For more detailed information and code, please refer to [GitHub](https://github.com/yueqingyou/BioQwen).
|