lixc commited on
Commit
1f218c5
·
1 Parent(s): 3549fd2

initial commit

Browse files
README.md ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # iSEEEK
2
+ Generative pretraining from the rankings of top expressing genes.
3
+ It was trained on more than 20 million single-cell transcriptomes with a sequence length of 64.
4
+
5
+
6
+
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-1536-1-16-2023Jan10/config.json",
3
+ "architectures": [
4
+ "BertForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "cls_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1536,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 6144,
14
+ "layer_norm_eps": 1e-12,
15
+ "mask_token_id": 4,
16
+ "max_position_embeddings": 1024,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 1,
20
+ "pad_token_id": 0,
21
+ "position_embedding_type": "absolute",
22
+ "sep_token_id": 3,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.25.0.dev0",
25
+ "type_vocab_size": 2,
26
+ "unk_token_id": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 21051
29
+ }
cp.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ cp /data/ai/gene_expression/bert/bert-1536-1-16-2023Jan10/pytorch_model.bin ./
2
+ cp /data/ai/gene_expression/bert/bert-1536-1-16-2023Jan10/config.json ./
3
+ cp /data/ai/gene_expression/bert/berttokenizer/* ./
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1d3ec5f69a7178fc41905f21dd418ffaa0999c14c7295030c667f7018777cce
3
+ size 258535764
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model_max_length": 512, "pad_token": "[PAD]", "unk_token": "[UNK]", "cls_token": "[CLS]", "sep_token": "[SEP]", "mask_token": "[MASK]", "tokenizer_class": "PreTrainedTokenizerFast"}