--- library_name: transformers license: mit base_model: microsoft/Multilingual-MiniLM-L12-H384 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: m-minilm-l12-h384-data-augumented-dra-tam-mal-aw-classification-finetune results: [] --- # m-minilm-l12-h384-data-augumented-dra-tam-mal-aw-classification-finetune This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6411 - Accuracy: 0.7702 - F1: 0.8164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.6713 | 0.2222 | 20 | 0.6683 | 0.5998 | 0.7499 | | 0.6494 | 0.4444 | 40 | 0.6559 | 0.6019 | 0.6459 | | 0.6431 | 0.6667 | 60 | 0.6389 | 0.6508 | 0.7346 | | 0.6079 | 0.8889 | 80 | 0.6318 | 0.6720 | 0.7166 | | 0.5667 | 1.1111 | 100 | 0.5755 | 0.7021 | 0.7401 | | 0.5353 | 1.3333 | 120 | 0.5437 | 0.7213 | 0.7927 | | 0.5345 | 1.5556 | 140 | 0.5306 | 0.7482 | 0.7964 | | 0.5178 | 1.7778 | 160 | 0.5366 | 0.7184 | 0.8031 | | 0.4952 | 2.0 | 180 | 0.5046 | 0.7543 | 0.8050 | | 0.4183 | 2.2222 | 200 | 0.5798 | 0.7278 | 0.7466 | | 0.4257 | 2.4444 | 220 | 0.5373 | 0.7673 | 0.8075 | | 0.3932 | 2.6667 | 240 | 0.5214 | 0.7665 | 0.8093 | | 0.3914 | 2.8889 | 260 | 0.5125 | 0.7616 | 0.8133 | | 0.3447 | 3.1111 | 280 | 0.5534 | 0.7653 | 0.8076 | | 0.3122 | 3.3333 | 300 | 0.5874 | 0.7543 | 0.7901 | | 0.3116 | 3.5556 | 320 | 0.5594 | 0.7649 | 0.8003 | | 0.326 | 3.7778 | 340 | 0.5446 | 0.7661 | 0.8158 | | 0.2979 | 4.0 | 360 | 0.5750 | 0.7681 | 0.8145 | | 0.2457 | 4.2222 | 380 | 0.6121 | 0.7677 | 0.8140 | | 0.2383 | 4.4444 | 400 | 0.5861 | 0.7689 | 0.8118 | | 0.2396 | 4.6667 | 420 | 0.6161 | 0.7734 | 0.8156 | | 0.2311 | 4.8889 | 440 | 0.5909 | 0.7751 | 0.8121 | | 0.2139 | 5.1111 | 460 | 0.6411 | 0.7702 | 0.8164 | | 0.2038 | 5.3333 | 480 | 0.6462 | 0.7718 | 0.8154 | | 0.1884 | 5.5556 | 500 | 0.6443 | 0.7645 | 0.8043 | | 0.1889 | 5.7778 | 520 | 0.6588 | 0.7665 | 0.8064 | | 0.2081 | 6.0 | 540 | 0.6581 | 0.7665 | 0.8054 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3