Upload 2 files
Browse files- QLNet_symmetry.ipynb +551 -0
- qlnet.py +385 -0
QLNet_symmetry.ipynb
ADDED
|
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "71b6152c",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import torch, timm\n",
|
| 11 |
+
"from qlnet import QLNet"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 2,
|
| 17 |
+
"id": "4e7ed219",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"m = QLNet()"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 3,
|
| 27 |
+
"id": "3f703be8",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"state_dict = torch.load('qlnet-50-v0.pth.tar')['state_dict']"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"execution_count": 4,
|
| 37 |
+
"id": "435e2358",
|
| 38 |
+
"metadata": {},
|
| 39 |
+
"outputs": [
|
| 40 |
+
{
|
| 41 |
+
"data": {
|
| 42 |
+
"text/plain": [
|
| 43 |
+
"<All keys matched successfully>"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
"execution_count": 4,
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"output_type": "execute_result"
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
"source": [
|
| 52 |
+
"m.load_state_dict(state_dict)"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 5,
|
| 58 |
+
"id": "f14d984a",
|
| 59 |
+
"metadata": {
|
| 60 |
+
"scrolled": true
|
| 61 |
+
},
|
| 62 |
+
"outputs": [
|
| 63 |
+
{
|
| 64 |
+
"data": {
|
| 65 |
+
"text/plain": [
|
| 66 |
+
"QLNet(\n",
|
| 67 |
+
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
|
| 68 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 69 |
+
" (act1): ReLU(inplace=True)\n",
|
| 70 |
+
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
|
| 71 |
+
" (layer1): Sequential(\n",
|
| 72 |
+
" (0): QLBlock(\n",
|
| 73 |
+
" (conv1): ConvBN(\n",
|
| 74 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 75 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 76 |
+
" )\n",
|
| 77 |
+
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 78 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 79 |
+
" (conv3): ConvBN(\n",
|
| 80 |
+
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 81 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 82 |
+
" )\n",
|
| 83 |
+
" (skip): Identity()\n",
|
| 84 |
+
" (act3): hardball()\n",
|
| 85 |
+
" )\n",
|
| 86 |
+
" (1): QLBlock(\n",
|
| 87 |
+
" (conv1): ConvBN(\n",
|
| 88 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 89 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 90 |
+
" )\n",
|
| 91 |
+
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 92 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 93 |
+
" (conv3): ConvBN(\n",
|
| 94 |
+
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 95 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 96 |
+
" )\n",
|
| 97 |
+
" (skip): Identity()\n",
|
| 98 |
+
" (act3): hardball()\n",
|
| 99 |
+
" )\n",
|
| 100 |
+
" (2): QLBlock(\n",
|
| 101 |
+
" (conv1): ConvBN(\n",
|
| 102 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 103 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 104 |
+
" )\n",
|
| 105 |
+
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 106 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 107 |
+
" (conv3): ConvBN(\n",
|
| 108 |
+
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 109 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 110 |
+
" )\n",
|
| 111 |
+
" (skip): Identity()\n",
|
| 112 |
+
" (act3): hardball()\n",
|
| 113 |
+
" )\n",
|
| 114 |
+
" )\n",
|
| 115 |
+
" (layer2): Sequential(\n",
|
| 116 |
+
" (0): QLBlock(\n",
|
| 117 |
+
" (conv1): ConvBN(\n",
|
| 118 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 119 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 120 |
+
" )\n",
|
| 121 |
+
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=256, bias=False)\n",
|
| 122 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 123 |
+
" (conv3): ConvBN(\n",
|
| 124 |
+
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 125 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 126 |
+
" )\n",
|
| 127 |
+
" (skip): ConvBN(\n",
|
| 128 |
+
" (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 129 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 130 |
+
" )\n",
|
| 131 |
+
" (act3): hardball()\n",
|
| 132 |
+
" )\n",
|
| 133 |
+
" (1): QLBlock(\n",
|
| 134 |
+
" (conv1): ConvBN(\n",
|
| 135 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 136 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 137 |
+
" )\n",
|
| 138 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 139 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 140 |
+
" (conv3): ConvBN(\n",
|
| 141 |
+
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 142 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 143 |
+
" )\n",
|
| 144 |
+
" (skip): Identity()\n",
|
| 145 |
+
" (act3): hardball()\n",
|
| 146 |
+
" )\n",
|
| 147 |
+
" (2): QLBlock(\n",
|
| 148 |
+
" (conv1): ConvBN(\n",
|
| 149 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 150 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 151 |
+
" )\n",
|
| 152 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 153 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 154 |
+
" (conv3): ConvBN(\n",
|
| 155 |
+
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 156 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 157 |
+
" )\n",
|
| 158 |
+
" (skip): Identity()\n",
|
| 159 |
+
" (act3): hardball()\n",
|
| 160 |
+
" )\n",
|
| 161 |
+
" (3): QLBlock(\n",
|
| 162 |
+
" (conv1): ConvBN(\n",
|
| 163 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 164 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 165 |
+
" )\n",
|
| 166 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 167 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 168 |
+
" (conv3): ConvBN(\n",
|
| 169 |
+
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 170 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 171 |
+
" )\n",
|
| 172 |
+
" (skip): Identity()\n",
|
| 173 |
+
" (act3): hardball()\n",
|
| 174 |
+
" )\n",
|
| 175 |
+
" )\n",
|
| 176 |
+
" (layer3): Sequential(\n",
|
| 177 |
+
" (0): QLBlock(\n",
|
| 178 |
+
" (conv1): ConvBN(\n",
|
| 179 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 180 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 181 |
+
" )\n",
|
| 182 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
| 183 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 184 |
+
" (conv3): ConvBN(\n",
|
| 185 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 186 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 187 |
+
" )\n",
|
| 188 |
+
" (skip): ConvBN(\n",
|
| 189 |
+
" (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 190 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 191 |
+
" )\n",
|
| 192 |
+
" (act3): hardball()\n",
|
| 193 |
+
" )\n",
|
| 194 |
+
" (1): QLBlock(\n",
|
| 195 |
+
" (conv1): ConvBN(\n",
|
| 196 |
+
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 197 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 198 |
+
" )\n",
|
| 199 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 200 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 201 |
+
" (conv3): ConvBN(\n",
|
| 202 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 203 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 204 |
+
" )\n",
|
| 205 |
+
" (skip): Identity()\n",
|
| 206 |
+
" (act3): hardball()\n",
|
| 207 |
+
" )\n",
|
| 208 |
+
" (2): QLBlock(\n",
|
| 209 |
+
" (conv1): ConvBN(\n",
|
| 210 |
+
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 211 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 212 |
+
" )\n",
|
| 213 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 214 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 215 |
+
" (conv3): ConvBN(\n",
|
| 216 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 217 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 218 |
+
" )\n",
|
| 219 |
+
" (skip): Identity()\n",
|
| 220 |
+
" (act3): hardball()\n",
|
| 221 |
+
" )\n",
|
| 222 |
+
" (3): QLBlock(\n",
|
| 223 |
+
" (conv1): ConvBN(\n",
|
| 224 |
+
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 225 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 226 |
+
" )\n",
|
| 227 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 228 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 229 |
+
" (conv3): ConvBN(\n",
|
| 230 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 231 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 232 |
+
" )\n",
|
| 233 |
+
" (skip): Identity()\n",
|
| 234 |
+
" (act3): hardball()\n",
|
| 235 |
+
" )\n",
|
| 236 |
+
" (4): QLBlock(\n",
|
| 237 |
+
" (conv1): ConvBN(\n",
|
| 238 |
+
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 239 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 240 |
+
" )\n",
|
| 241 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 242 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 243 |
+
" (conv3): ConvBN(\n",
|
| 244 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 245 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 246 |
+
" )\n",
|
| 247 |
+
" (skip): Identity()\n",
|
| 248 |
+
" (act3): hardball()\n",
|
| 249 |
+
" )\n",
|
| 250 |
+
" (5): QLBlock(\n",
|
| 251 |
+
" (conv1): ConvBN(\n",
|
| 252 |
+
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 253 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 254 |
+
" )\n",
|
| 255 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 256 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 257 |
+
" (conv3): ConvBN(\n",
|
| 258 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 259 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 260 |
+
" )\n",
|
| 261 |
+
" (skip): Identity()\n",
|
| 262 |
+
" (act3): hardball()\n",
|
| 263 |
+
" )\n",
|
| 264 |
+
" )\n",
|
| 265 |
+
" (layer4): Sequential(\n",
|
| 266 |
+
" (0): QLBlock(\n",
|
| 267 |
+
" (conv1): ConvBN(\n",
|
| 268 |
+
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 269 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 270 |
+
" )\n",
|
| 271 |
+
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
| 272 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 273 |
+
" (conv3): ConvBN(\n",
|
| 274 |
+
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 275 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 276 |
+
" )\n",
|
| 277 |
+
" (skip): ConvBN(\n",
|
| 278 |
+
" (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 279 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 280 |
+
" )\n",
|
| 281 |
+
" (act3): hardball()\n",
|
| 282 |
+
" )\n",
|
| 283 |
+
" (1): QLBlock(\n",
|
| 284 |
+
" (conv1): ConvBN(\n",
|
| 285 |
+
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 286 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 287 |
+
" )\n",
|
| 288 |
+
" (conv2): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 289 |
+
" (bn2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 290 |
+
" (conv3): ConvBN(\n",
|
| 291 |
+
" (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 292 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 293 |
+
" )\n",
|
| 294 |
+
" (skip): Identity()\n",
|
| 295 |
+
" (act3): hardball()\n",
|
| 296 |
+
" )\n",
|
| 297 |
+
" (2): QLBlock(\n",
|
| 298 |
+
" (conv1): ConvBN(\n",
|
| 299 |
+
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 300 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 301 |
+
" )\n",
|
| 302 |
+
" (conv2): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 303 |
+
" (bn2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 304 |
+
" (conv3): ConvBN(\n",
|
| 305 |
+
" (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 306 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 307 |
+
" )\n",
|
| 308 |
+
" (skip): Identity()\n",
|
| 309 |
+
" (act3): hardball()\n",
|
| 310 |
+
" )\n",
|
| 311 |
+
" )\n",
|
| 312 |
+
" (act): hardball()\n",
|
| 313 |
+
" (global_pool): SelectAdaptivePool2d (pool_type=avg, flatten=Flatten(start_dim=1, end_dim=-1))\n",
|
| 314 |
+
" (fc): Linear(in_features=512, out_features=1000, bias=True)\n",
|
| 315 |
+
")"
|
| 316 |
+
]
|
| 317 |
+
},
|
| 318 |
+
"execution_count": 5,
|
| 319 |
+
"metadata": {},
|
| 320 |
+
"output_type": "execute_result"
|
| 321 |
+
}
|
| 322 |
+
],
|
| 323 |
+
"source": [
|
| 324 |
+
"m.eval()"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "code",
|
| 329 |
+
"execution_count": 6,
|
| 330 |
+
"id": "2099b937",
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"outputs": [
|
| 333 |
+
{
|
| 334 |
+
"name": "stdout",
|
| 335 |
+
"output_type": "stream",
|
| 336 |
+
"text": [
|
| 337 |
+
"layer1 >>\n",
|
| 338 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 339 |
+
"torch.Size([64, 512, 1, 1])\n",
|
| 340 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 341 |
+
"torch.Size([64, 512, 1, 1])\n",
|
| 342 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 343 |
+
"torch.Size([64, 512, 1, 1])\n",
|
| 344 |
+
"layer2 >>\n",
|
| 345 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 346 |
+
"torch.Size([128, 512, 1, 1])\n",
|
| 347 |
+
"torch.Size([128, 64, 1, 1])\n",
|
| 348 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 349 |
+
"torch.Size([128, 1024, 1, 1])\n",
|
| 350 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 351 |
+
"torch.Size([128, 1024, 1, 1])\n",
|
| 352 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 353 |
+
"torch.Size([128, 1024, 1, 1])\n",
|
| 354 |
+
"layer3 >>\n",
|
| 355 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 356 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 357 |
+
"torch.Size([256, 128, 1, 1])\n",
|
| 358 |
+
"torch.Size([1024, 256, 1, 1])\n",
|
| 359 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 360 |
+
"torch.Size([1024, 256, 1, 1])\n",
|
| 361 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 362 |
+
"torch.Size([1024, 256, 1, 1])\n",
|
| 363 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 364 |
+
"torch.Size([1024, 256, 1, 1])\n",
|
| 365 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 366 |
+
"torch.Size([1024, 256, 1, 1])\n",
|
| 367 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 368 |
+
"layer4 >>\n",
|
| 369 |
+
"torch.Size([1024, 256, 1, 1])\n",
|
| 370 |
+
"torch.Size([512, 1024, 1, 1])\n",
|
| 371 |
+
"torch.Size([512, 256, 1, 1])\n",
|
| 372 |
+
"torch.Size([2048, 512, 1, 1])\n",
|
| 373 |
+
"torch.Size([512, 2048, 1, 1])\n",
|
| 374 |
+
"torch.Size([2048, 512, 1, 1])\n",
|
| 375 |
+
"torch.Size([512, 2048, 1, 1])\n"
|
| 376 |
+
]
|
| 377 |
+
}
|
| 378 |
+
],
|
| 379 |
+
"source": [
|
| 380 |
+
"# fuse ConvBN\n",
|
| 381 |
+
"i = 1\n",
|
| 382 |
+
"for layer in [m.layer1, m.layer2, m.layer3, m.layer4]:\n",
|
| 383 |
+
" print(f'layer{i} >>')\n",
|
| 384 |
+
" for block in layer:\n",
|
| 385 |
+
" # Fuse the weights in conv1 and conv3\n",
|
| 386 |
+
" block.conv1.fuse_bn()\n",
|
| 387 |
+
" print(block.conv1.fused_weight.size())\n",
|
| 388 |
+
" block.conv3.fuse_bn()\n",
|
| 389 |
+
" print(block.conv3.fused_weight.size())\n",
|
| 390 |
+
" if not isinstance(block.skip, torch.nn.Identity):\n",
|
| 391 |
+
" layer[0].skip.fuse_bn()\n",
|
| 392 |
+
" print(layer[0].skip.fused_weight.size())\n",
|
| 393 |
+
" i += 1"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"cell_type": "code",
|
| 398 |
+
"execution_count": 7,
|
| 399 |
+
"id": "b3a55f82",
|
| 400 |
+
"metadata": {},
|
| 401 |
+
"outputs": [],
|
| 402 |
+
"source": [
|
| 403 |
+
"inpt = torch.randn(5,3,224,224)"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"cell_type": "code",
|
| 408 |
+
"execution_count": 8,
|
| 409 |
+
"id": "dccbf19c",
|
| 410 |
+
"metadata": {},
|
| 411 |
+
"outputs": [],
|
| 412 |
+
"source": [
|
| 413 |
+
"out_old = m(inpt)"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": 10,
|
| 419 |
+
"id": "f0c74a04",
|
| 420 |
+
"metadata": {
|
| 421 |
+
"scrolled": true
|
| 422 |
+
},
|
| 423 |
+
"outputs": [
|
| 424 |
+
{
|
| 425 |
+
"data": {
|
| 426 |
+
"text/plain": [
|
| 427 |
+
"torch.Size([5, 1000])"
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
"execution_count": 10,
|
| 431 |
+
"metadata": {},
|
| 432 |
+
"output_type": "execute_result"
|
| 433 |
+
}
|
| 434 |
+
],
|
| 435 |
+
"source": [
|
| 436 |
+
"out_old.size()"
|
| 437 |
+
]
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"cell_type": "code",
|
| 441 |
+
"execution_count": 11,
|
| 442 |
+
"id": "a5991c8f",
|
| 443 |
+
"metadata": {},
|
| 444 |
+
"outputs": [],
|
| 445 |
+
"source": [
|
| 446 |
+
"def apply_transform(block1, block2, Q, keep_identity=True):\n",
|
| 447 |
+
" with torch.no_grad():\n",
|
| 448 |
+
" # Ensure that the out_channels of block1 is equal to the in_channels of block2\n",
|
| 449 |
+
" assert Q.size()[0] == Q.size()[1], \"Q needs to be a square matrix\"\n",
|
| 450 |
+
" n = Q.size()[0]\n",
|
| 451 |
+
" assert block1.conv3.conv.out_channels == n and block2.conv1.conv.in_channels == n, \"Mismatched channels between blocks\"\n",
|
| 452 |
+
"\n",
|
| 453 |
+
" n = block1.conv3.conv.out_channels\n",
|
| 454 |
+
" \n",
|
| 455 |
+
" # Calculate the inverse of Q\n",
|
| 456 |
+
" Q_inv = torch.inverse(Q)\n",
|
| 457 |
+
"\n",
|
| 458 |
+
" # Modify the weights of conv layers in block1\n",
|
| 459 |
+
" block1.conv3.fused_weight.data = torch.einsum('ij,jklm->iklm', Q, block1.conv3.fused_weight.data)\n",
|
| 460 |
+
" block1.conv3.fused_bias.data = torch.einsum('ij,j->i', Q, block1.conv3.fused_bias.data)\n",
|
| 461 |
+
" \n",
|
| 462 |
+
" if isinstance(block1.skip, torch.nn.Identity):\n",
|
| 463 |
+
" if not keep_identity:\n",
|
| 464 |
+
" block1.skip = torch.nn.Conv2d(n, n, kernel_size=1, bias=False)\n",
|
| 465 |
+
" block1.skip.weight.data = Q.unsqueeze(-1).unsqueeze(-1)\n",
|
| 466 |
+
" else:\n",
|
| 467 |
+
" block1.skip.fused_weight.data = torch.einsum('ij,jklm->iklm', Q, block1.skip.fused_weight.data)\n",
|
| 468 |
+
" block1.skip.fused_bias.data = torch.einsum('ij,j->i', Q, block1.skip.fused_bias.data)\n",
|
| 469 |
+
"\n",
|
| 470 |
+
" # Modify the weights of conv layers in block2\n",
|
| 471 |
+
" block2.conv1.fused_weight.data = torch.einsum('ki,jklm->jilm', Q_inv, block2.conv1.fused_weight.data)\n",
|
| 472 |
+
" \n",
|
| 473 |
+
" if isinstance(block2.skip, torch.nn.Identity):\n",
|
| 474 |
+
" if not keep_identity:\n",
|
| 475 |
+
" block2.skip = torch.nn.Conv2d(n, n, kernel_size=1, bias=False)\n",
|
| 476 |
+
" block2.skip.weight.data = Q_inv.unsqueeze(-1).unsqueeze(-1)\n",
|
| 477 |
+
" else:\n",
|
| 478 |
+
" block2.skip.fused_weight.data = torch.einsum('ki,jklm->jilm', Q_inv, block2.skip.fused_weight.data)\n"
|
| 479 |
+
]
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"cell_type": "code",
|
| 483 |
+
"execution_count": 12,
|
| 484 |
+
"id": "dd96acd7",
|
| 485 |
+
"metadata": {},
|
| 486 |
+
"outputs": [],
|
| 487 |
+
"source": [
|
| 488 |
+
"Q = torch.nn.init.orthogonal_(torch.empty(256, 256))\n",
|
| 489 |
+
"for i in range(5):\n",
|
| 490 |
+
" apply_transform(m.layer3[i], m.layer3[i+1], Q, True)\n",
|
| 491 |
+
"apply_transform(m.layer3[5], m.layer4[0], Q, True)"
|
| 492 |
+
]
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"cell_type": "code",
|
| 496 |
+
"execution_count": 13,
|
| 497 |
+
"id": "e5d3628d",
|
| 498 |
+
"metadata": {},
|
| 499 |
+
"outputs": [
|
| 500 |
+
{
|
| 501 |
+
"name": "stdout",
|
| 502 |
+
"output_type": "stream",
|
| 503 |
+
"text": [
|
| 504 |
+
"6.0558319091796875e-05\n"
|
| 505 |
+
]
|
| 506 |
+
}
|
| 507 |
+
],
|
| 508 |
+
"source": [
|
| 509 |
+
"out_new = m(inpt)\n",
|
| 510 |
+
"print((out_new - out_old).abs().max().item())"
|
| 511 |
+
]
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"cell_type": "code",
|
| 515 |
+
"execution_count": null,
|
| 516 |
+
"id": "9fce3a38",
|
| 517 |
+
"metadata": {},
|
| 518 |
+
"outputs": [],
|
| 519 |
+
"source": []
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"cell_type": "code",
|
| 523 |
+
"execution_count": null,
|
| 524 |
+
"id": "5a54fe8b",
|
| 525 |
+
"metadata": {},
|
| 526 |
+
"outputs": [],
|
| 527 |
+
"source": []
|
| 528 |
+
}
|
| 529 |
+
],
|
| 530 |
+
"metadata": {
|
| 531 |
+
"kernelspec": {
|
| 532 |
+
"display_name": "Python 3 (ipykernel)",
|
| 533 |
+
"language": "python",
|
| 534 |
+
"name": "python3"
|
| 535 |
+
},
|
| 536 |
+
"language_info": {
|
| 537 |
+
"codemirror_mode": {
|
| 538 |
+
"name": "ipython",
|
| 539 |
+
"version": 3
|
| 540 |
+
},
|
| 541 |
+
"file_extension": ".py",
|
| 542 |
+
"mimetype": "text/x-python",
|
| 543 |
+
"name": "python",
|
| 544 |
+
"nbconvert_exporter": "python",
|
| 545 |
+
"pygments_lexer": "ipython3",
|
| 546 |
+
"version": "3.10.6"
|
| 547 |
+
}
|
| 548 |
+
},
|
| 549 |
+
"nbformat": 4,
|
| 550 |
+
"nbformat_minor": 5
|
| 551 |
+
}
|
qlnet.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch ResNet
|
| 2 |
+
|
| 3 |
+
This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-Clause) with
|
| 4 |
+
additional dropout and dynamic global avg/max pool.
|
| 5 |
+
|
| 6 |
+
ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman
|
| 7 |
+
|
| 8 |
+
Copyright 2019, Ross Wightman
|
| 9 |
+
"""
|
| 10 |
+
import math
|
| 11 |
+
from functools import partial
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
|
| 18 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
| 19 |
+
from timm.layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, GroupNorm, create_attn, get_attn, \
|
| 20 |
+
get_act_layer, get_norm_layer, create_classifier, LayerNorm2d
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_padding(kernel_size, stride, dilation=1):
|
| 24 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
| 25 |
+
return padding
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class softball(nn.Module):
|
| 29 |
+
def __init__(self, radius2=None, inplace=True):
|
| 30 |
+
super(softball, self).__init__()
|
| 31 |
+
self.radius2 = radius2 if radius2 is not None else None
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
if self.radius2 is None:
|
| 35 |
+
self.radius2 = x.size()[1]
|
| 36 |
+
norm = torch.sqrt(1 + (x*x).sum(1, keepdim=True) / self.radius2)
|
| 37 |
+
return x / norm
|
| 38 |
+
|
| 39 |
+
class hardball(nn.Module):
|
| 40 |
+
def __init__(self, radius2=None):
|
| 41 |
+
super(hardball, self).__init__()
|
| 42 |
+
self.radius = np.sqrt(radius2) if radius2 is not None else None
|
| 43 |
+
|
| 44 |
+
def forward(self, x):
|
| 45 |
+
norm = torch.sqrt((x*x).sum(1, keepdim=True))
|
| 46 |
+
if self.radius is None:
|
| 47 |
+
self.radius = np.sqrt(x.size()[1])
|
| 48 |
+
return torch.where(norm > self.radius, self.radius * x / norm, x)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class ConvBN(nn.Module):
|
| 52 |
+
def __init__(self, conv, bn):
|
| 53 |
+
super(ConvBN, self).__init__()
|
| 54 |
+
self.conv = conv
|
| 55 |
+
self.bn = bn
|
| 56 |
+
self.fused_weight = None
|
| 57 |
+
self.fused_bias = None
|
| 58 |
+
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
if self.training:
|
| 61 |
+
x = self.conv(x)
|
| 62 |
+
x = self.bn(x)
|
| 63 |
+
else:
|
| 64 |
+
if self.fused_weight is not None and self.fused_bias is not None:
|
| 65 |
+
x = F.conv2d(x, self.fused_weight, self.fused_bias,
|
| 66 |
+
self.conv.stride, self.conv.padding,
|
| 67 |
+
self.conv.dilation, self.conv.groups)
|
| 68 |
+
else:
|
| 69 |
+
x = self.conv(x)
|
| 70 |
+
x = self.bn(x)
|
| 71 |
+
return x
|
| 72 |
+
|
| 73 |
+
def fuse_bn(self):
|
| 74 |
+
if self.training:
|
| 75 |
+
raise RuntimeError("Call fuse_bn only in eval mode")
|
| 76 |
+
|
| 77 |
+
# Calculate the fused weight and bias
|
| 78 |
+
w = self.conv.weight
|
| 79 |
+
mean = self.bn.running_mean
|
| 80 |
+
var = torch.sqrt(self.bn.running_var + self.bn.eps)
|
| 81 |
+
gamma = self.bn.weight
|
| 82 |
+
beta = self.bn.bias
|
| 83 |
+
|
| 84 |
+
self.fused_weight = w * (gamma / var).reshape(-1, 1, 1, 1)
|
| 85 |
+
self.fused_bias = beta - (gamma * mean / var)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class QLBlock(nn.Module): # quasilinear hyperbolic system
|
| 89 |
+
expansion = 1
|
| 90 |
+
|
| 91 |
+
def __init__(
|
| 92 |
+
self,
|
| 93 |
+
inplanes,
|
| 94 |
+
planes,
|
| 95 |
+
stride=1,
|
| 96 |
+
downsample=None,
|
| 97 |
+
cardinality=1,
|
| 98 |
+
base_width=64,
|
| 99 |
+
reduce_first=1,
|
| 100 |
+
dilation=1,
|
| 101 |
+
first_dilation=None,
|
| 102 |
+
act_layer=nn.ReLU,
|
| 103 |
+
norm_layer=nn.BatchNorm2d,
|
| 104 |
+
):
|
| 105 |
+
super(QLBlock, self).__init__()
|
| 106 |
+
|
| 107 |
+
k = 4 if inplanes <= 128 else 2
|
| 108 |
+
width = inplanes * k
|
| 109 |
+
outplanes = inplanes if downsample is None else inplanes * 2
|
| 110 |
+
first_dilation = first_dilation or dilation
|
| 111 |
+
|
| 112 |
+
self.conv1 = ConvBN(
|
| 113 |
+
nn.Conv2d(inplanes, width*2, kernel_size=1, stride=1,
|
| 114 |
+
dilation=first_dilation, groups=1, bias=False),
|
| 115 |
+
norm_layer(width*2))
|
| 116 |
+
|
| 117 |
+
self.conv2 = nn.Conv2d(width, width*2, kernel_size=3, stride=stride,
|
| 118 |
+
padding=1, dilation=first_dilation, groups=width, bias=False)
|
| 119 |
+
self.bn2 = norm_layer(width*2)
|
| 120 |
+
|
| 121 |
+
self.conv3 = ConvBN(
|
| 122 |
+
nn.Conv2d(width*2, outplanes, kernel_size=1, groups=1, bias=False),
|
| 123 |
+
norm_layer(outplanes))
|
| 124 |
+
|
| 125 |
+
self.skip = ConvBN(
|
| 126 |
+
nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride,
|
| 127 |
+
dilation=first_dilation, groups=1, bias=False),
|
| 128 |
+
norm_layer(outplanes)) if downsample is not None else nn.Identity()
|
| 129 |
+
|
| 130 |
+
self.act3 = hardball(radius2=outplanes) # if downsample is not None else None
|
| 131 |
+
|
| 132 |
+
def zero_init_last(self):
|
| 133 |
+
if getattr(self.conv3.bn, 'weight', None) is not None:
|
| 134 |
+
nn.init.zeros_(self.conv3.bn.weight)
|
| 135 |
+
|
| 136 |
+
def conv_forward(self, x):
|
| 137 |
+
conv = self.conv2
|
| 138 |
+
k = conv.in_channels
|
| 139 |
+
C = x.size()[1] // k
|
| 140 |
+
kernel = conv.weight.repeat(C, 1, 1, 1)
|
| 141 |
+
bias = conv.bias.repeat(C) if conv.bias is not None else None
|
| 142 |
+
return F.conv2d(x, kernel, bias, conv.stride,
|
| 143 |
+
conv.padding, conv.dilation, C * k)
|
| 144 |
+
|
| 145 |
+
def forward(self, x):
|
| 146 |
+
x0 = self.skip(x)
|
| 147 |
+
x = self.conv1(x)
|
| 148 |
+
C = x.size(1) // 2
|
| 149 |
+
x = x[:, :C, :, :] * x[:, C:, :, :]
|
| 150 |
+
x = self.conv2(x)
|
| 151 |
+
x = self.bn2(x)
|
| 152 |
+
x = self.conv3(x)
|
| 153 |
+
x += x0
|
| 154 |
+
if self.act3 is not None:
|
| 155 |
+
x = self.act3(x)
|
| 156 |
+
return x
|
| 157 |
+
|
| 158 |
+
def make_blocks(
|
| 159 |
+
block_fn,
|
| 160 |
+
channels,
|
| 161 |
+
block_repeats,
|
| 162 |
+
inplanes,
|
| 163 |
+
reduce_first=1,
|
| 164 |
+
output_stride=32,
|
| 165 |
+
down_kernel_size=1,
|
| 166 |
+
avg_down=False,
|
| 167 |
+
**kwargs,
|
| 168 |
+
):
|
| 169 |
+
stages = []
|
| 170 |
+
feature_info = []
|
| 171 |
+
net_num_blocks = sum(block_repeats)
|
| 172 |
+
net_block_idx = 0
|
| 173 |
+
net_stride = 4
|
| 174 |
+
dilation = prev_dilation = 1
|
| 175 |
+
for stage_idx, (planes, num_blocks) in enumerate(zip(channels, block_repeats)):
|
| 176 |
+
stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it
|
| 177 |
+
stride = 1 if stage_idx == 0 else 2
|
| 178 |
+
if net_stride >= output_stride:
|
| 179 |
+
dilation *= stride
|
| 180 |
+
stride = 1
|
| 181 |
+
else:
|
| 182 |
+
net_stride *= stride
|
| 183 |
+
|
| 184 |
+
downsample = None
|
| 185 |
+
if stride != 1 or inplanes != planes * block_fn.expansion:
|
| 186 |
+
downsample = True
|
| 187 |
+
|
| 188 |
+
block_kwargs = dict(reduce_first=reduce_first, dilation=dilation, **kwargs)
|
| 189 |
+
blocks = []
|
| 190 |
+
for block_idx in range(num_blocks):
|
| 191 |
+
downsample = downsample if block_idx == 0 else None
|
| 192 |
+
stride = stride if block_idx == 0 else 1
|
| 193 |
+
blocks.append(block_fn(
|
| 194 |
+
inplanes, planes, stride, downsample, first_dilation=prev_dilation,
|
| 195 |
+
**block_kwargs))
|
| 196 |
+
prev_dilation = dilation
|
| 197 |
+
inplanes = planes * block_fn.expansion
|
| 198 |
+
net_block_idx += 1
|
| 199 |
+
|
| 200 |
+
stages.append((stage_name, nn.Sequential(*blocks)))
|
| 201 |
+
feature_info.append(dict(num_chs=inplanes, reduction=net_stride, module=stage_name))
|
| 202 |
+
|
| 203 |
+
return stages, feature_info
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class QLNet(nn.Module):
|
| 207 |
+
# based on timm code for ResNet / ResNeXt / SE-ResNeXt / SE-Net
|
| 208 |
+
|
| 209 |
+
def __init__(
|
| 210 |
+
self,
|
| 211 |
+
block=QLBlock, # new block
|
| 212 |
+
layers=[3,4,6,3], # as in resnet50
|
| 213 |
+
num_classes=1000,
|
| 214 |
+
in_chans=3,
|
| 215 |
+
output_stride=32,
|
| 216 |
+
global_pool='avg',
|
| 217 |
+
cardinality=1,
|
| 218 |
+
base_width=64,
|
| 219 |
+
stem_width=64,
|
| 220 |
+
stem_type='',
|
| 221 |
+
replace_stem_pool=False,
|
| 222 |
+
block_reduce_first=1,
|
| 223 |
+
down_kernel_size=1,
|
| 224 |
+
avg_down=False,
|
| 225 |
+
act_layer=nn.ReLU,
|
| 226 |
+
norm_layer=nn.BatchNorm2d,
|
| 227 |
+
zero_init_last=True,
|
| 228 |
+
block_args=None,
|
| 229 |
+
):
|
| 230 |
+
"""
|
| 231 |
+
Args:
|
| 232 |
+
block (nn.Module): class for the residual block. Options are BasicBlock, Bottleneck.
|
| 233 |
+
layers (List[int]) : number of layers in each block
|
| 234 |
+
num_classes (int): number of classification classes (default 1000)
|
| 235 |
+
in_chans (int): number of input (color) channels. (default 3)
|
| 236 |
+
output_stride (int): output stride of the network, 32, 16, or 8. (default 32)
|
| 237 |
+
global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg')
|
| 238 |
+
cardinality (int): number of convolution groups for 3x3 conv in Bottleneck. (default 1)
|
| 239 |
+
base_width (int): bottleneck channels factor. `planes * base_width / 64 * cardinality` (default 64)
|
| 240 |
+
stem_width (int): number of channels in stem convolutions (default 64)
|
| 241 |
+
stem_type (str): The type of stem (default ''):
|
| 242 |
+
* '', default - a single 7x7 conv with a width of stem_width
|
| 243 |
+
* 'deep' - three 3x3 convolution layers of widths stem_width, stem_width, stem_width * 2
|
| 244 |
+
* 'deep_tiered' - three 3x3 conv layers of widths stem_width//4 * 3, stem_width, stem_width * 2
|
| 245 |
+
replace_stem_pool (bool): replace stem max-pooling layer with a 3x3 stride-2 convolution
|
| 246 |
+
block_reduce_first (int): Reduction factor for first convolution output width of residual blocks,
|
| 247 |
+
1 for all archs except senets, where 2 (default 1)
|
| 248 |
+
down_kernel_size (int): kernel size of residual block downsample path,
|
| 249 |
+
1x1 for most, 3x3 for senets (default: 1)
|
| 250 |
+
avg_down (bool): use avg pooling for projection skip connection between stages/downsample (default False)
|
| 251 |
+
act_layer (str, nn.Module): activation layer
|
| 252 |
+
norm_layer (str, nn.Module): normalization layer
|
| 253 |
+
zero_init_last (bool): zero-init the last weight in residual path (usually last BN affine weight)
|
| 254 |
+
block_args (dict): Extra kwargs to pass through to block module
|
| 255 |
+
"""
|
| 256 |
+
super(QLNet, self).__init__()
|
| 257 |
+
block_args = block_args or dict()
|
| 258 |
+
assert output_stride in (8, 16, 32)
|
| 259 |
+
self.num_classes = num_classes
|
| 260 |
+
self.grad_checkpointing = False
|
| 261 |
+
|
| 262 |
+
act_layer = get_act_layer(act_layer)
|
| 263 |
+
norm_layer = get_norm_layer(norm_layer)
|
| 264 |
+
|
| 265 |
+
# Stem
|
| 266 |
+
deep_stem = 'deep' in stem_type
|
| 267 |
+
inplanes = stem_width * 2 if deep_stem else 64
|
| 268 |
+
if deep_stem:
|
| 269 |
+
stem_chs = (stem_width, stem_width)
|
| 270 |
+
if 'tiered' in stem_type:
|
| 271 |
+
stem_chs = (3 * (stem_width // 4), stem_width)
|
| 272 |
+
self.conv1 = nn.Sequential(*[
|
| 273 |
+
nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False),
|
| 274 |
+
norm_layer(stem_chs[0]),
|
| 275 |
+
act_layer(inplace=True),
|
| 276 |
+
nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False),
|
| 277 |
+
norm_layer(stem_chs[1]),
|
| 278 |
+
act_layer(inplace=True),
|
| 279 |
+
nn.Conv2d(stem_chs[1], inplanes, 3, stride=1, padding=1, bias=False)])
|
| 280 |
+
else:
|
| 281 |
+
self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False)
|
| 282 |
+
self.bn1 = norm_layer(inplanes)
|
| 283 |
+
self.act1 = act_layer(inplace=True)
|
| 284 |
+
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]
|
| 285 |
+
|
| 286 |
+
# Stem pooling. The name 'maxpool' remains for weight compatibility.
|
| 287 |
+
if replace_stem_pool:
|
| 288 |
+
self.maxpool = nn.Sequential(*filter(None, [
|
| 289 |
+
nn.Conv2d(inplanes, inplanes, 3, stride=2, padding=1, bias=False),
|
| 290 |
+
norm_layer(inplanes),
|
| 291 |
+
act_layer(inplace=True)
|
| 292 |
+
]))
|
| 293 |
+
else:
|
| 294 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 295 |
+
|
| 296 |
+
# Feature Blocks
|
| 297 |
+
channels = [64, 128, 256, 512]
|
| 298 |
+
stage_modules, stage_feature_info = make_blocks(
|
| 299 |
+
block,
|
| 300 |
+
channels,
|
| 301 |
+
layers,
|
| 302 |
+
inplanes,
|
| 303 |
+
cardinality=cardinality,
|
| 304 |
+
base_width=base_width,
|
| 305 |
+
output_stride=output_stride,
|
| 306 |
+
reduce_first=block_reduce_first,
|
| 307 |
+
avg_down=avg_down,
|
| 308 |
+
down_kernel_size=down_kernel_size,
|
| 309 |
+
act_layer=act_layer,
|
| 310 |
+
norm_layer=norm_layer,
|
| 311 |
+
**block_args,
|
| 312 |
+
)
|
| 313 |
+
for stage in stage_modules:
|
| 314 |
+
self.add_module(*stage) # layer1, layer2, etc
|
| 315 |
+
self.feature_info.extend(stage_feature_info)
|
| 316 |
+
|
| 317 |
+
self.act = hardball(radius2=512)
|
| 318 |
+
# self.act = nn.Hardtanh(max_val=5, min_val=-5, inplace=True)
|
| 319 |
+
# self.act = nn.ReLU(inplace=True)
|
| 320 |
+
|
| 321 |
+
# Head (Pooling and Classifier)
|
| 322 |
+
self.num_features = 512 * block.expansion
|
| 323 |
+
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
| 324 |
+
|
| 325 |
+
self.init_weights(zero_init_last=zero_init_last)
|
| 326 |
+
|
| 327 |
+
@staticmethod
|
| 328 |
+
def from_pretrained(model_name: str, load_weights=True, **kwargs) -> 'ResNet':
|
| 329 |
+
entry_fn = model_entrypoint(model_name, 'resnet')
|
| 330 |
+
return entry_fn(pretrained=not load_weights, **kwargs)
|
| 331 |
+
|
| 332 |
+
@torch.jit.ignore
|
| 333 |
+
def init_weights(self, zero_init_last=True):
|
| 334 |
+
for n, m in self.named_modules():
|
| 335 |
+
if isinstance(m, nn.Conv2d):
|
| 336 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='linear') # 'linear' for non-relu activations
|
| 337 |
+
# nn.init.xavier_normal_(m.weight)
|
| 338 |
+
if zero_init_last:
|
| 339 |
+
for m in self.modules():
|
| 340 |
+
if hasattr(m, 'zero_init_last'):
|
| 341 |
+
m.zero_init_last()
|
| 342 |
+
|
| 343 |
+
@torch.jit.ignore
|
| 344 |
+
def group_matcher(self, coarse=False):
|
| 345 |
+
matcher = dict(stem=r'^conv1|bn1|maxpool', blocks=r'^layer(\d+)' if coarse else r'^layer(\d+)\.(\d+)')
|
| 346 |
+
return matcher
|
| 347 |
+
|
| 348 |
+
@torch.jit.ignore
|
| 349 |
+
def set_grad_checkpointing(self, enable=True):
|
| 350 |
+
self.grad_checkpointing = enable
|
| 351 |
+
|
| 352 |
+
@torch.jit.ignore
|
| 353 |
+
def get_classifier(self, name_only=False):
|
| 354 |
+
return 'fc' if name_only else self.fc
|
| 355 |
+
|
| 356 |
+
def reset_classifier(self, num_classes, global_pool='avg'):
|
| 357 |
+
self.num_classes = num_classes
|
| 358 |
+
self.global_pool, self.fc = create_classifier(self.num_features, 99, # self.num_classes,
|
| 359 |
+
pool_type=global_pool)
|
| 360 |
+
|
| 361 |
+
def forward_features(self, x):
|
| 362 |
+
x = self.conv1(x)
|
| 363 |
+
x = self.bn1(x)
|
| 364 |
+
x = self.act1(x)
|
| 365 |
+
x = self.maxpool(x)
|
| 366 |
+
|
| 367 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
| 368 |
+
x = checkpoint_seq([self.layer1, self.layer2, self.layer3, self.layer4], x, flatten=True)
|
| 369 |
+
else:
|
| 370 |
+
x = self.layer1(x)
|
| 371 |
+
x = self.layer2(x)
|
| 372 |
+
x = self.layer3(x)
|
| 373 |
+
x = self.layer4(x)
|
| 374 |
+
return x
|
| 375 |
+
|
| 376 |
+
def forward_head(self, x, pre_logits: bool = False):
|
| 377 |
+
x = self.global_pool(x)
|
| 378 |
+
return x if pre_logits else self.fc(x)
|
| 379 |
+
|
| 380 |
+
def forward(self, x):
|
| 381 |
+
x = self.forward_features(x)
|
| 382 |
+
x = self.act(x)
|
| 383 |
+
x = self.forward_head(x)
|
| 384 |
+
return x
|
| 385 |
+
|