Upload 2 files
Browse files- QLNet_symmetry.ipynb +540 -594
- qlnet.py +4 -4
QLNet_symmetry.ipynb
CHANGED
|
@@ -1,605 +1,551 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
},
|
| 41 |
-
"id": "7vDt28zlzi0r",
|
| 42 |
-
"execution_count": 5,
|
| 43 |
-
"outputs": []
|
| 44 |
-
},
|
| 45 |
-
{
|
| 46 |
-
"cell_type": "code",
|
| 47 |
-
"execution_count": 9,
|
| 48 |
-
"id": "3f703be8",
|
| 49 |
-
"metadata": {
|
| 50 |
-
"colab": {
|
| 51 |
-
"base_uri": "https://localhost:8080/"
|
| 52 |
-
},
|
| 53 |
-
"id": "3f703be8",
|
| 54 |
-
"outputId": "de73c734-305f-4955-fe69-7b7253b4f95e"
|
| 55 |
-
},
|
| 56 |
-
"outputs": [
|
| 57 |
-
{
|
| 58 |
-
"output_type": "stream",
|
| 59 |
-
"name": "stdout",
|
| 60 |
-
"text": [
|
| 61 |
-
"Using device: cpu\n"
|
| 62 |
-
]
|
| 63 |
-
},
|
| 64 |
-
{
|
| 65 |
-
"output_type": "execute_result",
|
| 66 |
-
"data": {
|
| 67 |
-
"text/plain": [
|
| 68 |
-
"<All keys matched successfully>"
|
| 69 |
-
]
|
| 70 |
-
},
|
| 71 |
-
"metadata": {},
|
| 72 |
-
"execution_count": 9
|
| 73 |
-
}
|
| 74 |
-
],
|
| 75 |
-
"source": [
|
| 76 |
-
"# Check if GPU is available and set the device accordingly\n",
|
| 77 |
-
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 78 |
-
"print(f\"Using device: {device}\")\n",
|
| 79 |
-
"\n",
|
| 80 |
-
"# Create an instance of your model and load it to the device\n",
|
| 81 |
-
"model = QLNet().to(device)\n",
|
| 82 |
-
"\n",
|
| 83 |
-
"# Load the model weights\n",
|
| 84 |
-
"model.load_state_dict(torch.load('qlnet-50-v0.pth.tar', map_location=device)['state_dict'])"
|
| 85 |
-
]
|
| 86 |
-
},
|
| 87 |
-
{
|
| 88 |
-
"cell_type": "code",
|
| 89 |
-
"execution_count": 10,
|
| 90 |
-
"id": "f14d984a",
|
| 91 |
-
"metadata": {
|
| 92 |
-
"scrolled": true,
|
| 93 |
-
"colab": {
|
| 94 |
-
"base_uri": "https://localhost:8080/"
|
| 95 |
-
},
|
| 96 |
-
"id": "f14d984a",
|
| 97 |
-
"outputId": "efc70253-4bc0-4d0c-92d8-d247118138bc"
|
| 98 |
-
},
|
| 99 |
-
"outputs": [
|
| 100 |
-
{
|
| 101 |
-
"output_type": "execute_result",
|
| 102 |
-
"data": {
|
| 103 |
-
"text/plain": [
|
| 104 |
-
"QLNet(\n",
|
| 105 |
-
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
|
| 106 |
-
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 107 |
-
" (act1): ReLU(inplace=True)\n",
|
| 108 |
-
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
|
| 109 |
-
" (layer1): Sequential(\n",
|
| 110 |
-
" (0): QLBlock(\n",
|
| 111 |
-
" (conv1): ConvBN(\n",
|
| 112 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 113 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 114 |
-
" )\n",
|
| 115 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 116 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 117 |
-
" (conv3): ConvBN(\n",
|
| 118 |
-
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 119 |
-
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 120 |
-
" )\n",
|
| 121 |
-
" (skip): Identity()\n",
|
| 122 |
-
" (act3): hardball()\n",
|
| 123 |
-
" )\n",
|
| 124 |
-
" (1): QLBlock(\n",
|
| 125 |
-
" (conv1): ConvBN(\n",
|
| 126 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 127 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 128 |
-
" )\n",
|
| 129 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 130 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 131 |
-
" (conv3): ConvBN(\n",
|
| 132 |
-
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 133 |
-
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 134 |
-
" )\n",
|
| 135 |
-
" (skip): Identity()\n",
|
| 136 |
-
" (act3): hardball()\n",
|
| 137 |
-
" )\n",
|
| 138 |
-
" (2): QLBlock(\n",
|
| 139 |
-
" (conv1): ConvBN(\n",
|
| 140 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 141 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 142 |
-
" )\n",
|
| 143 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 144 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 145 |
-
" (conv3): ConvBN(\n",
|
| 146 |
-
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 147 |
-
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 148 |
-
" )\n",
|
| 149 |
-
" (skip): Identity()\n",
|
| 150 |
-
" (act3): hardball()\n",
|
| 151 |
-
" )\n",
|
| 152 |
-
" )\n",
|
| 153 |
-
" (layer2): Sequential(\n",
|
| 154 |
-
" (0): QLBlock(\n",
|
| 155 |
-
" (conv1): ConvBN(\n",
|
| 156 |
-
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 157 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 158 |
-
" )\n",
|
| 159 |
-
" (conv2): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=256, bias=False)\n",
|
| 160 |
-
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 161 |
-
" (conv3): ConvBN(\n",
|
| 162 |
-
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 163 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 164 |
-
" )\n",
|
| 165 |
-
" (skip): ConvBN(\n",
|
| 166 |
-
" (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 167 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 168 |
-
" )\n",
|
| 169 |
-
" (act3): hardball()\n",
|
| 170 |
-
" )\n",
|
| 171 |
-
" (1): QLBlock(\n",
|
| 172 |
-
" (conv1): ConvBN(\n",
|
| 173 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 174 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 175 |
-
" )\n",
|
| 176 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 177 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 178 |
-
" (conv3): ConvBN(\n",
|
| 179 |
-
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 180 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 181 |
-
" )\n",
|
| 182 |
-
" (skip): Identity()\n",
|
| 183 |
-
" (act3): hardball()\n",
|
| 184 |
-
" )\n",
|
| 185 |
-
" (2): QLBlock(\n",
|
| 186 |
-
" (conv1): ConvBN(\n",
|
| 187 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 188 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 189 |
-
" )\n",
|
| 190 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 191 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 192 |
-
" (conv3): ConvBN(\n",
|
| 193 |
-
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 194 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 195 |
-
" )\n",
|
| 196 |
-
" (skip): Identity()\n",
|
| 197 |
-
" (act3): hardball()\n",
|
| 198 |
-
" )\n",
|
| 199 |
-
" (3): QLBlock(\n",
|
| 200 |
-
" (conv1): ConvBN(\n",
|
| 201 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 202 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 203 |
-
" )\n",
|
| 204 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 205 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 206 |
-
" (conv3): ConvBN(\n",
|
| 207 |
-
" (conv): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 208 |
-
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 209 |
-
" )\n",
|
| 210 |
-
" (skip): Identity()\n",
|
| 211 |
-
" (act3): hardball()\n",
|
| 212 |
-
" )\n",
|
| 213 |
-
" )\n",
|
| 214 |
-
" (layer3): Sequential(\n",
|
| 215 |
-
" (0): QLBlock(\n",
|
| 216 |
-
" (conv1): ConvBN(\n",
|
| 217 |
-
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 218 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 219 |
-
" )\n",
|
| 220 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
| 221 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 222 |
-
" (conv3): ConvBN(\n",
|
| 223 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 224 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 225 |
-
" )\n",
|
| 226 |
-
" (skip): ConvBN(\n",
|
| 227 |
-
" (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 228 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 229 |
-
" )\n",
|
| 230 |
-
" (act3): hardball()\n",
|
| 231 |
-
" )\n",
|
| 232 |
-
" (1): QLBlock(\n",
|
| 233 |
-
" (conv1): ConvBN(\n",
|
| 234 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 235 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 236 |
-
" )\n",
|
| 237 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 238 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 239 |
-
" (conv3): ConvBN(\n",
|
| 240 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 241 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 242 |
-
" )\n",
|
| 243 |
-
" (skip): Identity()\n",
|
| 244 |
-
" (act3): hardball()\n",
|
| 245 |
-
" )\n",
|
| 246 |
-
" (2): QLBlock(\n",
|
| 247 |
-
" (conv1): ConvBN(\n",
|
| 248 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 249 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 250 |
-
" )\n",
|
| 251 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 252 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 253 |
-
" (conv3): ConvBN(\n",
|
| 254 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 255 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 256 |
-
" )\n",
|
| 257 |
-
" (skip): Identity()\n",
|
| 258 |
-
" (act3): hardball()\n",
|
| 259 |
-
" )\n",
|
| 260 |
-
" (3): QLBlock(\n",
|
| 261 |
-
" (conv1): ConvBN(\n",
|
| 262 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 263 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 264 |
-
" )\n",
|
| 265 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 266 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 267 |
-
" (conv3): ConvBN(\n",
|
| 268 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 269 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 270 |
-
" )\n",
|
| 271 |
-
" (skip): Identity()\n",
|
| 272 |
-
" (act3): hardball()\n",
|
| 273 |
-
" )\n",
|
| 274 |
-
" (4): QLBlock(\n",
|
| 275 |
-
" (conv1): ConvBN(\n",
|
| 276 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 277 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 278 |
-
" )\n",
|
| 279 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 280 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 281 |
-
" (conv3): ConvBN(\n",
|
| 282 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 283 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 284 |
-
" )\n",
|
| 285 |
-
" (skip): Identity()\n",
|
| 286 |
-
" (act3): hardball()\n",
|
| 287 |
-
" )\n",
|
| 288 |
-
" (5): QLBlock(\n",
|
| 289 |
-
" (conv1): ConvBN(\n",
|
| 290 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 291 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 292 |
-
" )\n",
|
| 293 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 294 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 295 |
-
" (conv3): ConvBN(\n",
|
| 296 |
-
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 297 |
-
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 298 |
-
" )\n",
|
| 299 |
-
" (skip): Identity()\n",
|
| 300 |
-
" (act3): hardball()\n",
|
| 301 |
-
" )\n",
|
| 302 |
-
" )\n",
|
| 303 |
-
" (layer4): Sequential(\n",
|
| 304 |
-
" (0): QLBlock(\n",
|
| 305 |
-
" (conv1): ConvBN(\n",
|
| 306 |
-
" (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 307 |
-
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 308 |
-
" )\n",
|
| 309 |
-
" (conv2): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
| 310 |
-
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 311 |
-
" (conv3): ConvBN(\n",
|
| 312 |
-
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 313 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 314 |
-
" )\n",
|
| 315 |
-
" (skip): ConvBN(\n",
|
| 316 |
-
" (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 317 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 318 |
-
" )\n",
|
| 319 |
-
" (act3): hardball()\n",
|
| 320 |
-
" )\n",
|
| 321 |
-
" (1): QLBlock(\n",
|
| 322 |
-
" (conv1): ConvBN(\n",
|
| 323 |
-
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 324 |
-
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 325 |
-
" )\n",
|
| 326 |
-
" (conv2): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 327 |
-
" (bn2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 328 |
-
" (conv3): ConvBN(\n",
|
| 329 |
-
" (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 330 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 331 |
-
" )\n",
|
| 332 |
-
" (skip): Identity()\n",
|
| 333 |
-
" (act3): hardball()\n",
|
| 334 |
-
" )\n",
|
| 335 |
-
" (2): QLBlock(\n",
|
| 336 |
-
" (conv1): ConvBN(\n",
|
| 337 |
-
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 338 |
-
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 339 |
-
" )\n",
|
| 340 |
-
" (conv2): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 341 |
-
" (bn2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 342 |
-
" (conv3): ConvBN(\n",
|
| 343 |
-
" (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 344 |
-
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 345 |
-
" )\n",
|
| 346 |
-
" (skip): Identity()\n",
|
| 347 |
-
" (act3): hardball()\n",
|
| 348 |
-
" )\n",
|
| 349 |
-
" )\n",
|
| 350 |
-
" (act): hardball()\n",
|
| 351 |
-
" (global_pool): SelectAdaptivePool2d(pool_type=avg, flatten=Flatten(start_dim=1, end_dim=-1))\n",
|
| 352 |
-
" (fc): Linear(in_features=512, out_features=1000, bias=True)\n",
|
| 353 |
-
")"
|
| 354 |
-
]
|
| 355 |
-
},
|
| 356 |
-
"metadata": {},
|
| 357 |
-
"execution_count": 10
|
| 358 |
-
}
|
| 359 |
-
],
|
| 360 |
-
"source": [
|
| 361 |
-
"model.eval()"
|
| 362 |
-
]
|
| 363 |
-
},
|
| 364 |
-
{
|
| 365 |
-
"cell_type": "code",
|
| 366 |
-
"execution_count": 12,
|
| 367 |
-
"id": "2099b937",
|
| 368 |
-
"metadata": {
|
| 369 |
-
"colab": {
|
| 370 |
-
"base_uri": "https://localhost:8080/"
|
| 371 |
-
},
|
| 372 |
-
"id": "2099b937",
|
| 373 |
-
"outputId": "ac4557a4-ed2a-47b2-eca7-d9a337fff3f1"
|
| 374 |
-
},
|
| 375 |
-
"outputs": [
|
| 376 |
-
{
|
| 377 |
-
"output_type": "stream",
|
| 378 |
-
"name": "stdout",
|
| 379 |
-
"text": [
|
| 380 |
-
"layer1 >>\n",
|
| 381 |
-
"torch.Size([512, 64, 1, 1])\n",
|
| 382 |
-
"torch.Size([64, 512, 1, 1])\n",
|
| 383 |
-
"torch.Size([512, 64, 1, 1])\n",
|
| 384 |
-
"torch.Size([64, 512, 1, 1])\n",
|
| 385 |
-
"torch.Size([512, 64, 1, 1])\n",
|
| 386 |
-
"torch.Size([64, 512, 1, 1])\n",
|
| 387 |
-
"layer2 >>\n",
|
| 388 |
-
"torch.Size([512, 64, 1, 1])\n",
|
| 389 |
-
"torch.Size([128, 512, 1, 1])\n",
|
| 390 |
-
"torch.Size([128, 64, 1, 1])\n",
|
| 391 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
| 392 |
-
"torch.Size([128, 1024, 1, 1])\n",
|
| 393 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
| 394 |
-
"torch.Size([128, 1024, 1, 1])\n",
|
| 395 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
| 396 |
-
"torch.Size([128, 1024, 1, 1])\n",
|
| 397 |
-
"layer3 >>\n",
|
| 398 |
-
"torch.Size([1024, 128, 1, 1])\n",
|
| 399 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
| 400 |
-
"torch.Size([256, 128, 1, 1])\n",
|
| 401 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
| 402 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
| 403 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
| 404 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
| 405 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
| 406 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
| 407 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
| 408 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
| 409 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
| 410 |
-
"torch.Size([256, 1024, 1, 1])\n",
|
| 411 |
-
"layer4 >>\n",
|
| 412 |
-
"torch.Size([1024, 256, 1, 1])\n",
|
| 413 |
-
"torch.Size([512, 1024, 1, 1])\n",
|
| 414 |
-
"torch.Size([512, 256, 1, 1])\n",
|
| 415 |
-
"torch.Size([2048, 512, 1, 1])\n",
|
| 416 |
-
"torch.Size([512, 2048, 1, 1])\n",
|
| 417 |
-
"torch.Size([2048, 512, 1, 1])\n",
|
| 418 |
-
"torch.Size([512, 2048, 1, 1])\n"
|
| 419 |
-
]
|
| 420 |
-
}
|
| 421 |
-
],
|
| 422 |
-
"source": [
|
| 423 |
-
"# fuse ConvBN\n",
|
| 424 |
-
"i = 1\n",
|
| 425 |
-
"for layer in [model.layer1, model.layer2, model.layer3, model.layer4]:\n",
|
| 426 |
-
" print(f'layer{i} >>')\n",
|
| 427 |
-
" for block in layer:\n",
|
| 428 |
-
" # Fuse the weights in conv1 and conv3\n",
|
| 429 |
-
" block.conv1.fuse_bn()\n",
|
| 430 |
-
" print(block.conv1.fused_weight.size())\n",
|
| 431 |
-
" block.conv3.fuse_bn()\n",
|
| 432 |
-
" print(block.conv3.fused_weight.size())\n",
|
| 433 |
-
" if not isinstance(block.skip, torch.nn.Identity):\n",
|
| 434 |
-
" layer[0].skip.fuse_bn()\n",
|
| 435 |
-
" print(layer[0].skip.fused_weight.size())\n",
|
| 436 |
-
" i += 1"
|
| 437 |
-
]
|
| 438 |
-
},
|
| 439 |
-
{
|
| 440 |
-
"cell_type": "code",
|
| 441 |
-
"execution_count": 13,
|
| 442 |
-
"id": "b3a55f82",
|
| 443 |
-
"metadata": {
|
| 444 |
-
"id": "b3a55f82"
|
| 445 |
-
},
|
| 446 |
-
"outputs": [],
|
| 447 |
-
"source": [
|
| 448 |
-
"x = torch.randn(5,3,224,224)"
|
| 449 |
-
]
|
| 450 |
-
},
|
| 451 |
{
|
| 452 |
-
|
| 453 |
-
"
|
| 454 |
-
|
| 455 |
-
"metadata": {
|
| 456 |
-
"colab": {
|
| 457 |
-
"base_uri": "https://localhost:8080/"
|
| 458 |
-
},
|
| 459 |
-
"id": "dccbf19c",
|
| 460 |
-
"outputId": "4a5409f4-761b-4682-a5be-5f55fd595135"
|
| 461 |
-
},
|
| 462 |
-
"outputs": [
|
| 463 |
-
{
|
| 464 |
-
"output_type": "stream",
|
| 465 |
-
"name": "stdout",
|
| 466 |
-
"text": [
|
| 467 |
-
"torch.Size([5, 1000])\n"
|
| 468 |
-
]
|
| 469 |
-
}
|
| 470 |
-
],
|
| 471 |
-
"source": [
|
| 472 |
-
"y_old = model(x)\n",
|
| 473 |
-
"print(y_old.size())"
|
| 474 |
]
|
| 475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
{
|
| 477 |
-
|
| 478 |
-
"
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 518 |
]
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
{
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
"
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
"
|
| 528 |
-
"
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
]
|
| 534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
{
|
| 536 |
-
|
| 537 |
-
"
|
| 538 |
-
|
| 539 |
-
"metadata": {
|
| 540 |
-
"colab": {
|
| 541 |
-
"base_uri": "https://localhost:8080/"
|
| 542 |
-
},
|
| 543 |
-
"id": "e5d3628d",
|
| 544 |
-
"outputId": "667cfe17-e3fb-4009-9553-a765c6377321"
|
| 545 |
-
},
|
| 546 |
-
"outputs": [
|
| 547 |
-
{
|
| 548 |
-
"output_type": "stream",
|
| 549 |
-
"name": "stdout",
|
| 550 |
-
"text": [
|
| 551 |
-
"8.472800254821777e-05\n"
|
| 552 |
-
]
|
| 553 |
-
}
|
| 554 |
-
],
|
| 555 |
-
"source": [
|
| 556 |
-
"y_new = model(x)\n",
|
| 557 |
-
"print((y_new - y_old).abs().max().item())"
|
| 558 |
]
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
"id": "9fce3a38",
|
| 564 |
-
"metadata": {
|
| 565 |
-
"id": "9fce3a38"
|
| 566 |
-
},
|
| 567 |
-
"outputs": [],
|
| 568 |
-
"source": []
|
| 569 |
-
},
|
| 570 |
-
{
|
| 571 |
-
"cell_type": "code",
|
| 572 |
-
"execution_count": null,
|
| 573 |
-
"id": "5a54fe8b",
|
| 574 |
-
"metadata": {
|
| 575 |
-
"id": "5a54fe8b"
|
| 576 |
-
},
|
| 577 |
-
"outputs": [],
|
| 578 |
-
"source": []
|
| 579 |
}
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
"
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
"
|
| 600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 601 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 602 |
},
|
| 603 |
-
"
|
| 604 |
-
|
| 605 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "71b6152c",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import torch, timm\n",
|
| 11 |
+
"from qlnet import QLNet"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 2,
|
| 17 |
+
"id": "4e7ed219",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"m = QLNet()"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 3,
|
| 27 |
+
"id": "3f703be8",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"state_dict = torch.load('qlnet-10m.pth.tar')"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"execution_count": 4,
|
| 37 |
+
"id": "435e2358",
|
| 38 |
+
"metadata": {},
|
| 39 |
+
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
{
|
| 41 |
+
"data": {
|
| 42 |
+
"text/plain": [
|
| 43 |
+
"<All keys matched successfully>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
]
|
| 45 |
+
},
|
| 46 |
+
"execution_count": 4,
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"output_type": "execute_result"
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
"source": [
|
| 52 |
+
"m.load_state_dict(state_dict)"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 5,
|
| 58 |
+
"id": "f14d984a",
|
| 59 |
+
"metadata": {
|
| 60 |
+
"scrolled": true
|
| 61 |
+
},
|
| 62 |
+
"outputs": [
|
| 63 |
{
|
| 64 |
+
"data": {
|
| 65 |
+
"text/plain": [
|
| 66 |
+
"QLNet(\n",
|
| 67 |
+
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
|
| 68 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 69 |
+
" (act1): ReLU(inplace=True)\n",
|
| 70 |
+
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
|
| 71 |
+
" (layer1): Sequential(\n",
|
| 72 |
+
" (0): QLBlock(\n",
|
| 73 |
+
" (conv1): ConvBN(\n",
|
| 74 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 75 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 76 |
+
" )\n",
|
| 77 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 78 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 79 |
+
" (conv3): ConvBN(\n",
|
| 80 |
+
" (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 81 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 82 |
+
" )\n",
|
| 83 |
+
" (skip): Identity()\n",
|
| 84 |
+
" (act3): hardball()\n",
|
| 85 |
+
" )\n",
|
| 86 |
+
" (1): QLBlock(\n",
|
| 87 |
+
" (conv1): ConvBN(\n",
|
| 88 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 89 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 90 |
+
" )\n",
|
| 91 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 92 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 93 |
+
" (conv3): ConvBN(\n",
|
| 94 |
+
" (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 95 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 96 |
+
" )\n",
|
| 97 |
+
" (skip): Identity()\n",
|
| 98 |
+
" (act3): hardball()\n",
|
| 99 |
+
" )\n",
|
| 100 |
+
" (2): QLBlock(\n",
|
| 101 |
+
" (conv1): ConvBN(\n",
|
| 102 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 103 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 104 |
+
" )\n",
|
| 105 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False)\n",
|
| 106 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 107 |
+
" (conv3): ConvBN(\n",
|
| 108 |
+
" (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 109 |
+
" (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 110 |
+
" )\n",
|
| 111 |
+
" (skip): Identity()\n",
|
| 112 |
+
" (act3): hardball()\n",
|
| 113 |
+
" )\n",
|
| 114 |
+
" )\n",
|
| 115 |
+
" (layer2): Sequential(\n",
|
| 116 |
+
" (0): QLBlock(\n",
|
| 117 |
+
" (conv1): ConvBN(\n",
|
| 118 |
+
" (conv): Conv2d(64, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 119 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 120 |
+
" )\n",
|
| 121 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=256, bias=False)\n",
|
| 122 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 123 |
+
" (conv3): ConvBN(\n",
|
| 124 |
+
" (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 125 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 126 |
+
" )\n",
|
| 127 |
+
" (skip): ConvBN(\n",
|
| 128 |
+
" (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 129 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 130 |
+
" )\n",
|
| 131 |
+
" (act3): hardball()\n",
|
| 132 |
+
" )\n",
|
| 133 |
+
" (1): QLBlock(\n",
|
| 134 |
+
" (conv1): ConvBN(\n",
|
| 135 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 136 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 137 |
+
" )\n",
|
| 138 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 139 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 140 |
+
" (conv3): ConvBN(\n",
|
| 141 |
+
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 142 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 143 |
+
" )\n",
|
| 144 |
+
" (skip): Identity()\n",
|
| 145 |
+
" (act3): hardball()\n",
|
| 146 |
+
" )\n",
|
| 147 |
+
" (2): QLBlock(\n",
|
| 148 |
+
" (conv1): ConvBN(\n",
|
| 149 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 150 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 151 |
+
" )\n",
|
| 152 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 153 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 154 |
+
" (conv3): ConvBN(\n",
|
| 155 |
+
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 156 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 157 |
+
" )\n",
|
| 158 |
+
" (skip): Identity()\n",
|
| 159 |
+
" (act3): hardball()\n",
|
| 160 |
+
" )\n",
|
| 161 |
+
" (3): QLBlock(\n",
|
| 162 |
+
" (conv1): ConvBN(\n",
|
| 163 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 164 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 165 |
+
" )\n",
|
| 166 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)\n",
|
| 167 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 168 |
+
" (conv3): ConvBN(\n",
|
| 169 |
+
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 170 |
+
" (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 171 |
+
" )\n",
|
| 172 |
+
" (skip): Identity()\n",
|
| 173 |
+
" (act3): hardball()\n",
|
| 174 |
+
" )\n",
|
| 175 |
+
" )\n",
|
| 176 |
+
" (layer3): Sequential(\n",
|
| 177 |
+
" (0): QLBlock(\n",
|
| 178 |
+
" (conv1): ConvBN(\n",
|
| 179 |
+
" (conv): Conv2d(128, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 180 |
+
" (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 181 |
+
" )\n",
|
| 182 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=512, bias=False)\n",
|
| 183 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 184 |
+
" (conv3): ConvBN(\n",
|
| 185 |
+
" (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 186 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 187 |
+
" )\n",
|
| 188 |
+
" (skip): ConvBN(\n",
|
| 189 |
+
" (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 190 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 191 |
+
" )\n",
|
| 192 |
+
" (act3): hardball()\n",
|
| 193 |
+
" )\n",
|
| 194 |
+
" (1): QLBlock(\n",
|
| 195 |
+
" (conv1): ConvBN(\n",
|
| 196 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 197 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 198 |
+
" )\n",
|
| 199 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 200 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 201 |
+
" (conv3): ConvBN(\n",
|
| 202 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 203 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 204 |
+
" )\n",
|
| 205 |
+
" (skip): Identity()\n",
|
| 206 |
+
" (act3): hardball()\n",
|
| 207 |
+
" )\n",
|
| 208 |
+
" (2): QLBlock(\n",
|
| 209 |
+
" (conv1): ConvBN(\n",
|
| 210 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 211 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 212 |
+
" )\n",
|
| 213 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 214 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 215 |
+
" (conv3): ConvBN(\n",
|
| 216 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 217 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 218 |
+
" )\n",
|
| 219 |
+
" (skip): Identity()\n",
|
| 220 |
+
" (act3): hardball()\n",
|
| 221 |
+
" )\n",
|
| 222 |
+
" (3): QLBlock(\n",
|
| 223 |
+
" (conv1): ConvBN(\n",
|
| 224 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 225 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 226 |
+
" )\n",
|
| 227 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 228 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 229 |
+
" (conv3): ConvBN(\n",
|
| 230 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 231 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 232 |
+
" )\n",
|
| 233 |
+
" (skip): Identity()\n",
|
| 234 |
+
" (act3): hardball()\n",
|
| 235 |
+
" )\n",
|
| 236 |
+
" (4): QLBlock(\n",
|
| 237 |
+
" (conv1): ConvBN(\n",
|
| 238 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 239 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 240 |
+
" )\n",
|
| 241 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 242 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 243 |
+
" (conv3): ConvBN(\n",
|
| 244 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 245 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 246 |
+
" )\n",
|
| 247 |
+
" (skip): Identity()\n",
|
| 248 |
+
" (act3): hardball()\n",
|
| 249 |
+
" )\n",
|
| 250 |
+
" (5): QLBlock(\n",
|
| 251 |
+
" (conv1): ConvBN(\n",
|
| 252 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 253 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 254 |
+
" )\n",
|
| 255 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 256 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 257 |
+
" (conv3): ConvBN(\n",
|
| 258 |
+
" (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 259 |
+
" (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 260 |
+
" )\n",
|
| 261 |
+
" (skip): Identity()\n",
|
| 262 |
+
" (act3): hardball()\n",
|
| 263 |
+
" )\n",
|
| 264 |
+
" )\n",
|
| 265 |
+
" (layer4): Sequential(\n",
|
| 266 |
+
" (0): QLBlock(\n",
|
| 267 |
+
" (conv1): ConvBN(\n",
|
| 268 |
+
" (conv): Conv2d(256, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 269 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 270 |
+
" )\n",
|
| 271 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=1024, bias=False)\n",
|
| 272 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 273 |
+
" (conv3): ConvBN(\n",
|
| 274 |
+
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 275 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 276 |
+
" )\n",
|
| 277 |
+
" (skip): ConvBN(\n",
|
| 278 |
+
" (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
| 279 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 280 |
+
" )\n",
|
| 281 |
+
" (act3): hardball()\n",
|
| 282 |
+
" )\n",
|
| 283 |
+
" (1): QLBlock(\n",
|
| 284 |
+
" (conv1): ConvBN(\n",
|
| 285 |
+
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 286 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 287 |
+
" )\n",
|
| 288 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 289 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 290 |
+
" (conv3): ConvBN(\n",
|
| 291 |
+
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 292 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 293 |
+
" )\n",
|
| 294 |
+
" (skip): Identity()\n",
|
| 295 |
+
" (act3): hardball()\n",
|
| 296 |
+
" )\n",
|
| 297 |
+
" (2): QLBlock(\n",
|
| 298 |
+
" (conv1): ConvBN(\n",
|
| 299 |
+
" (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 300 |
+
" (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 301 |
+
" )\n",
|
| 302 |
+
" (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False)\n",
|
| 303 |
+
" (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 304 |
+
" (conv3): ConvBN(\n",
|
| 305 |
+
" (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
| 306 |
+
" (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 307 |
+
" )\n",
|
| 308 |
+
" (skip): Identity()\n",
|
| 309 |
+
" (act3): hardball()\n",
|
| 310 |
+
" )\n",
|
| 311 |
+
" )\n",
|
| 312 |
+
" (act): hardball()\n",
|
| 313 |
+
" (global_pool): SelectAdaptivePool2d (pool_type=avg, flatten=Flatten(start_dim=1, end_dim=-1))\n",
|
| 314 |
+
" (fc): Linear(in_features=512, out_features=1000, bias=True)\n",
|
| 315 |
+
")"
|
| 316 |
]
|
| 317 |
+
},
|
| 318 |
+
"execution_count": 5,
|
| 319 |
+
"metadata": {},
|
| 320 |
+
"output_type": "execute_result"
|
| 321 |
+
}
|
| 322 |
+
],
|
| 323 |
+
"source": [
|
| 324 |
+
"m.eval()"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "code",
|
| 329 |
+
"execution_count": 6,
|
| 330 |
+
"id": "2099b937",
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"outputs": [
|
| 333 |
{
|
| 334 |
+
"name": "stdout",
|
| 335 |
+
"output_type": "stream",
|
| 336 |
+
"text": [
|
| 337 |
+
"layer1 >>\n",
|
| 338 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 339 |
+
"torch.Size([64, 256, 1, 1])\n",
|
| 340 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 341 |
+
"torch.Size([64, 256, 1, 1])\n",
|
| 342 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 343 |
+
"torch.Size([64, 256, 1, 1])\n",
|
| 344 |
+
"layer2 >>\n",
|
| 345 |
+
"torch.Size([512, 64, 1, 1])\n",
|
| 346 |
+
"torch.Size([128, 256, 1, 1])\n",
|
| 347 |
+
"torch.Size([128, 64, 1, 1])\n",
|
| 348 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 349 |
+
"torch.Size([128, 512, 1, 1])\n",
|
| 350 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 351 |
+
"torch.Size([128, 512, 1, 1])\n",
|
| 352 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 353 |
+
"torch.Size([128, 512, 1, 1])\n",
|
| 354 |
+
"layer3 >>\n",
|
| 355 |
+
"torch.Size([1024, 128, 1, 1])\n",
|
| 356 |
+
"torch.Size([256, 512, 1, 1])\n",
|
| 357 |
+
"torch.Size([256, 128, 1, 1])\n",
|
| 358 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
| 359 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 360 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
| 361 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 362 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
| 363 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 364 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
| 365 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 366 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
| 367 |
+
"torch.Size([256, 1024, 1, 1])\n",
|
| 368 |
+
"layer4 >>\n",
|
| 369 |
+
"torch.Size([2048, 256, 1, 1])\n",
|
| 370 |
+
"torch.Size([512, 1024, 1, 1])\n",
|
| 371 |
+
"torch.Size([512, 256, 1, 1])\n",
|
| 372 |
+
"torch.Size([2048, 512, 1, 1])\n",
|
| 373 |
+
"torch.Size([512, 1024, 1, 1])\n",
|
| 374 |
+
"torch.Size([2048, 512, 1, 1])\n",
|
| 375 |
+
"torch.Size([512, 1024, 1, 1])\n"
|
| 376 |
+
]
|
| 377 |
+
}
|
| 378 |
+
],
|
| 379 |
+
"source": [
|
| 380 |
+
"# fuse ConvBN\n",
|
| 381 |
+
"i = 1\n",
|
| 382 |
+
"for layer in [m.layer1, m.layer2, m.layer3, m.layer4]:\n",
|
| 383 |
+
" print(f'layer{i} >>')\n",
|
| 384 |
+
" for block in layer:\n",
|
| 385 |
+
" # Fuse the weights in conv1 and conv3\n",
|
| 386 |
+
" block.conv1.fuse_bn()\n",
|
| 387 |
+
" print(block.conv1.fused_weight.size())\n",
|
| 388 |
+
" block.conv3.fuse_bn()\n",
|
| 389 |
+
" print(block.conv3.fused_weight.size())\n",
|
| 390 |
+
" if not isinstance(block.skip, torch.nn.Identity):\n",
|
| 391 |
+
" layer[0].skip.fuse_bn()\n",
|
| 392 |
+
" print(layer[0].skip.fused_weight.size())\n",
|
| 393 |
+
" i += 1"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"cell_type": "code",
|
| 398 |
+
"execution_count": 7,
|
| 399 |
+
"id": "b3a55f82",
|
| 400 |
+
"metadata": {},
|
| 401 |
+
"outputs": [],
|
| 402 |
+
"source": [
|
| 403 |
+
"x = torch.randn(5,3,224,224)"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"cell_type": "code",
|
| 408 |
+
"execution_count": 8,
|
| 409 |
+
"id": "dccbf19c",
|
| 410 |
+
"metadata": {},
|
| 411 |
+
"outputs": [],
|
| 412 |
+
"source": [
|
| 413 |
+
"out_old = m(x)"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": 9,
|
| 419 |
+
"id": "f0c74a04",
|
| 420 |
+
"metadata": {
|
| 421 |
+
"scrolled": true
|
| 422 |
+
},
|
| 423 |
+
"outputs": [
|
| 424 |
{
|
| 425 |
+
"data": {
|
| 426 |
+
"text/plain": [
|
| 427 |
+
"torch.Size([5, 1000])"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
]
|
| 429 |
+
},
|
| 430 |
+
"execution_count": 9,
|
| 431 |
+
"metadata": {},
|
| 432 |
+
"output_type": "execute_result"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
}
|
| 434 |
+
],
|
| 435 |
+
"source": [
|
| 436 |
+
"out_old.size()"
|
| 437 |
+
]
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"cell_type": "code",
|
| 441 |
+
"execution_count": 10,
|
| 442 |
+
"id": "a5991c8f",
|
| 443 |
+
"metadata": {},
|
| 444 |
+
"outputs": [],
|
| 445 |
+
"source": [
|
| 446 |
+
"def apply_transform(block1, block2, Q, keep_identity=True):\n",
|
| 447 |
+
" with torch.no_grad():\n",
|
| 448 |
+
" # Ensure that the out_channels of block1 is equal to the in_channels of block2\n",
|
| 449 |
+
" assert Q.size()[0] == Q.size()[1], \"Q needs to be a square matrix\"\n",
|
| 450 |
+
" n = Q.size()[0]\n",
|
| 451 |
+
" assert block1.conv3.conv.out_channels == n and block2.conv1.conv.in_channels == n, \"Mismatched channels between blocks\"\n",
|
| 452 |
+
"\n",
|
| 453 |
+
" n = block1.conv3.conv.out_channels\n",
|
| 454 |
+
" \n",
|
| 455 |
+
" # Calculate the inverse of Q\n",
|
| 456 |
+
" Q_inv = torch.inverse(Q)\n",
|
| 457 |
+
"\n",
|
| 458 |
+
" # Modify the weights of conv layers in block1\n",
|
| 459 |
+
" block1.conv3.fused_weight.data = torch.einsum('ij,jklm->iklm', Q, block1.conv3.fused_weight.data)\n",
|
| 460 |
+
" block1.conv3.fused_bias.data = torch.einsum('ij,j->i', Q, block1.conv3.fused_bias.data)\n",
|
| 461 |
+
" \n",
|
| 462 |
+
" if isinstance(block1.skip, torch.nn.Identity):\n",
|
| 463 |
+
" if not keep_identity:\n",
|
| 464 |
+
" block1.skip = torch.nn.Conv2d(n, n, kernel_size=1, bias=False)\n",
|
| 465 |
+
" block1.skip.weight.data = Q.unsqueeze(-1).unsqueeze(-1)\n",
|
| 466 |
+
" else:\n",
|
| 467 |
+
" block1.skip.fused_weight.data = torch.einsum('ij,jklm->iklm', Q, block1.skip.fused_weight.data)\n",
|
| 468 |
+
" block1.skip.fused_bias.data = torch.einsum('ij,j->i', Q, block1.skip.fused_bias.data)\n",
|
| 469 |
+
"\n",
|
| 470 |
+
" # Modify the weights of conv layers in block2\n",
|
| 471 |
+
" block2.conv1.fused_weight.data = torch.einsum('ki,jklm->jilm', Q_inv, block2.conv1.fused_weight.data)\n",
|
| 472 |
+
" \n",
|
| 473 |
+
" if isinstance(block2.skip, torch.nn.Identity):\n",
|
| 474 |
+
" if not keep_identity:\n",
|
| 475 |
+
" block2.skip = torch.nn.Conv2d(n, n, kernel_size=1, bias=False)\n",
|
| 476 |
+
" block2.skip.weight.data = Q_inv.unsqueeze(-1).unsqueeze(-1)\n",
|
| 477 |
+
" else:\n",
|
| 478 |
+
" block2.skip.fused_weight.data = torch.einsum('ki,jklm->jilm', Q_inv, block2.skip.fused_weight.data)\n"
|
| 479 |
+
]
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"cell_type": "code",
|
| 483 |
+
"execution_count": 11,
|
| 484 |
+
"id": "dd96acd7",
|
| 485 |
+
"metadata": {},
|
| 486 |
+
"outputs": [],
|
| 487 |
+
"source": [
|
| 488 |
+
"Q = torch.nn.init.orthogonal_(torch.empty(256, 256))\n",
|
| 489 |
+
"for i in range(5):\n",
|
| 490 |
+
" apply_transform(m.layer3[i], m.layer3[i+1], Q, True)\n",
|
| 491 |
+
"apply_transform(m.layer3[5], m.layer4[0], Q, True)"
|
| 492 |
+
]
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"cell_type": "code",
|
| 496 |
+
"execution_count": 12,
|
| 497 |
+
"id": "e5d3628d",
|
| 498 |
+
"metadata": {},
|
| 499 |
+
"outputs": [
|
| 500 |
+
{
|
| 501 |
+
"name": "stdout",
|
| 502 |
+
"output_type": "stream",
|
| 503 |
+
"text": [
|
| 504 |
+
"6.666779518127441e-05\n"
|
| 505 |
+
]
|
| 506 |
}
|
| 507 |
+
],
|
| 508 |
+
"source": [
|
| 509 |
+
"out_new = m(x)\n",
|
| 510 |
+
"print((out_new - out_old).abs().max().item())"
|
| 511 |
+
]
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"cell_type": "code",
|
| 515 |
+
"execution_count": null,
|
| 516 |
+
"id": "9fce3a38",
|
| 517 |
+
"metadata": {},
|
| 518 |
+
"outputs": [],
|
| 519 |
+
"source": []
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"cell_type": "code",
|
| 523 |
+
"execution_count": null,
|
| 524 |
+
"id": "5a54fe8b",
|
| 525 |
+
"metadata": {},
|
| 526 |
+
"outputs": [],
|
| 527 |
+
"source": []
|
| 528 |
+
}
|
| 529 |
+
],
|
| 530 |
+
"metadata": {
|
| 531 |
+
"kernelspec": {
|
| 532 |
+
"display_name": "Python 3 (ipykernel)",
|
| 533 |
+
"language": "python",
|
| 534 |
+
"name": "python3"
|
| 535 |
},
|
| 536 |
+
"language_info": {
|
| 537 |
+
"codemirror_mode": {
|
| 538 |
+
"name": "ipython",
|
| 539 |
+
"version": 3
|
| 540 |
+
},
|
| 541 |
+
"file_extension": ".py",
|
| 542 |
+
"mimetype": "text/x-python",
|
| 543 |
+
"name": "python",
|
| 544 |
+
"nbconvert_exporter": "python",
|
| 545 |
+
"pygments_lexer": "ipython3",
|
| 546 |
+
"version": "3.10.6"
|
| 547 |
+
}
|
| 548 |
+
},
|
| 549 |
+
"nbformat": 4,
|
| 550 |
+
"nbformat_minor": 5
|
| 551 |
+
}
|
qlnet.py
CHANGED
|
@@ -104,7 +104,7 @@ class QLBlock(nn.Module): # quasilinear hyperbolic system
|
|
| 104 |
):
|
| 105 |
super(QLBlock, self).__init__()
|
| 106 |
|
| 107 |
-
k = 4 if inplanes <=
|
| 108 |
width = inplanes * k
|
| 109 |
outplanes = inplanes if downsample is None else inplanes * 2
|
| 110 |
first_dilation = first_dilation or dilation
|
|
@@ -114,12 +114,12 @@ class QLBlock(nn.Module): # quasilinear hyperbolic system
|
|
| 114 |
dilation=first_dilation, groups=1, bias=False),
|
| 115 |
norm_layer(width*2))
|
| 116 |
|
| 117 |
-
self.conv2 = nn.Conv2d(width, width
|
| 118 |
padding=1, dilation=first_dilation, groups=width, bias=False)
|
| 119 |
-
self.bn2 = norm_layer(width
|
| 120 |
|
| 121 |
self.conv3 = ConvBN(
|
| 122 |
-
nn.Conv2d(width
|
| 123 |
norm_layer(outplanes))
|
| 124 |
|
| 125 |
self.skip = ConvBN(
|
|
|
|
| 104 |
):
|
| 105 |
super(QLBlock, self).__init__()
|
| 106 |
|
| 107 |
+
k = 4 if inplanes <= 256 else 2
|
| 108 |
width = inplanes * k
|
| 109 |
outplanes = inplanes if downsample is None else inplanes * 2
|
| 110 |
first_dilation = first_dilation or dilation
|
|
|
|
| 114 |
dilation=first_dilation, groups=1, bias=False),
|
| 115 |
norm_layer(width*2))
|
| 116 |
|
| 117 |
+
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
|
| 118 |
padding=1, dilation=first_dilation, groups=width, bias=False)
|
| 119 |
+
self.bn2 = norm_layer(width)
|
| 120 |
|
| 121 |
self.conv3 = ConvBN(
|
| 122 |
+
nn.Conv2d(width, outplanes, kernel_size=1, groups=1, bias=False),
|
| 123 |
norm_layer(outplanes))
|
| 124 |
|
| 125 |
self.skip = ConvBN(
|