File size: 4,132 Bytes
42fa14a a703759 42fa14a 7bf9a41 d46ec21 c3cf389 5828b76 42fa14a 1f6af64 42fa14a d46ec21 020c806 42fa14a 3aa8f64 42fa14a 020c806 a703759 42fa14a 1f6af64 42fa14a 1f6af64 42fa14a 1f6af64 42fa14a 1f6af64 42fa14a 1f6af64 42fa14a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
datasets:
- imagenet-1k
metrics:
- accuracy
library_name: timm
---
# Model Card for Model ID
Based on **quasi-linear hyperbolic systems of PDEs** [[Liu et al, 2023](https://github.com/liuyao12/ConvNets-PDE-perspective)], the QLNet enters uncharted waters of ConvNet model space marked by the use of (element-wise) multiplication instead of ReLU as the primary nonlinearity. It achieves comparable performance as ResNet50 on ImageNet-1k (acc=**78.4**), demonstrating that it has the same level of capacity/expressivity, and deserves more study (hyper-paremeter tuning, optimizer, etc.) by the community.

One notable feature is that the architecture (trained or not) admits a *continuous* symmetry in its parameters. Check out the [notebook](https://colab.research.google.com/#fileId=https://huggingface.co/liuyao/QLNet/blob/main/QLNet_symmetry.ipynb) for a demo that makes a particular transformation on the weights while leaving the output *unchanged*.
*This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).*
## Model Details
### Model Description
Instead of the `bottleneck` block of ResNet50 which consists of 1x1, 3x3, 1x1 in succession, this simplest version of QLNet does a 1x1, splits into two equal halves and **multiplies** them, then applies a 3x3 (depthwise), and a 1x1, all *without* activation functions except at the end of the block, where a *radial activation function* that we call `hardball` is applied.
- **Developed by:** Yao Liu 刘杳
- **Model type:** Convolutional Neural Network (ConvNet)
- **License:** [More Information Needed]
- **Finetuned from model:** N/A (*trained from scratch*)
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [ConvNet from the PDE perspective](https://github.com/liuyao12/ConvNets-PDE-perspective)
- **Paper:** [A Novel ConvNet Architecture with a Continuous Symmetry](https://arxiv.org/abs/2308.01621)
- **Demo:** [More Information Needed]
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training and Testing Data
ImageNet-1k
[More Information Needed]
### Training Procedure
We use the training script in `timm`
```
python3 train.py ../datasets/imagenet/ --model resnet50 --num-classes 1000 --lr 0.1 --warmup-epochs 5 --epochs 240 --weight-decay 1e-4 --sched cosine --reprob 0.4 --recount 3 --remode pixel --aa rand-m7-mstd0.5-inc1 -b 192 -j 6 --amp --dist-bn reduce
```
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
### Results
top1 acc = 78.40
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
single GPU :(
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |