File size: 1,979 Bytes
f57a286
 
 
 
 
 
 
 
 
 
 
da1d62f
 
f57a286
ad94108
da1d62f
 
 
 
 
 
 
 
 
 
 
 
f57a286
 
 
 
 
ad94108
f57a286
 
ad94108
da1d62f
 
f57a286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1d62f
 
 
 
 
 
 
 
 
 
ad94108
f57a286
 
6512f70
 
d2d41fe
6512f70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Chinese_english
metrics:
- wer
model-index:
- name: Whisper tiny Chinese
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Chinese English
      type: Chinese_english
      args: 'config: default, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 18.379666401906274
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper tiny Chinese

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Chinese English dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5120
- Wer: 18.3797

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1500

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0001        | 1.6667 | 500  | 0.4646          | 17.5060 |
| 0.0           | 3.3333 | 1000 | 0.5031          | 18.0937 |
| 0.0           | 5.0    | 1500 | 0.5120          | 18.3797 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1