File size: 4,306 Bytes
3639728 04ade0a 7cb94e6 04ade0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
pipeline_tag: any-to-any
---
# Model Repository Documentation
## Repository Structure Overview
The repository is organized into eight main directories, each serving a specific purpose in the pipeline:
### Meta Data (1_meta_data)
Contains AMASS dataset metadata specifically focused on copycat and occlusion information, essential for motion capture applications.
### MediaPipe Models (2_mediapipe_ckpts)
Houses MediaPipe's specialized models for facial landmarks and hand tracking, providing fundamental capabilities for human pose estimation.
### 4DHumans Framework (3_4DHumans)
Incorporates the SMPL (Skinned Multi-Person Linear Model) framework along with training artifacts. The directory includes model parameters, joint regressors, and HMR2 (Human Mesh Recovery) training checkpoints with corresponding configuration files.
### SMPLhub (4_SMPLhub)
Serves as a comprehensive collection of human body models, including:
- MANO (hand model) parameters for both left and right hands
- SMPL models in various formats (NPZ and PKL) for male, female, and neutral body types
- SMPLH (SMPL with detailed hand articulation)
- SMPLX (extended SMPL model with face and hand expressions)
### Additional Components
- S3FD (5_S3FD): Contains face detection model weights
- SyncNet (6_SyncNet): Includes audio-visual synchronization model
- SGHM (7_SGHM): Houses ResNet50-based model weights
- KonIQ (8_koniq): Contains pre-trained weights for image quality assessment
```
βββ 1_meta_data
β βββ amass_copycat_occlusion_v3.pkl
βββ 2_mediapipe_ckpts
β βββ face_landmarker.task
β βββ hand_landmarker.task
βββ 3_4DHumans
β βββ data
β β βββ smpl
β β β βββ SMPL_NEUTRAL.pkl
β β βββ smpl_mean_params.npz
β β βββ SMPL_to_J19.pkl
β βββ logs
β βββ train
β βββ multiruns
β βββ hmr2
β βββ 0
β βββ checkpoints
β β βββ epoch=35-step=1000000.ckpt
β βββ dataset_config.yaml
β βββ model_config.yaml
βββ 4_SMPLhub
β βββ 0_misc_files
β β βββ J_regressor_coco.npy
β βββ MANO
β β βββ pkl
β β βββ MANO_LEFT.pkl
β β βββ mano_mean_params.npz
β β βββ MANO_RIGHT.pkl
β βββ SMPL
β β βββ basicmodel_X_lbs_10_207_0_v1.1.0_pkl
β β β βββ basicmodel_f_lbs_10_207_0_v1.1.0.pkl
β β β βββ basicmodel_m_lbs_10_207_0_v1.1.0.pkl
β β β βββ basicmodel_neutral_lbs_10_207_0_v1.1.0.pkl
β β βββ X_model_npz
β β β βββ SMPL_F_model.npz
β β β βββ SMPL_M_model.npz
β β β βββ SMPL_N_model.npz
β β βββ X_pkl
β β βββ SMPL_FEMALE.pkl
β β βββ SMPL_MALE.pkl
β β βββ SMPL_NEUTRAL.pkl
β βββ SMPLH
β β βββ X_npz
β β β βββ SMPLH_FEMALE.npz
β β β βββ SMPLH_MALE.npz
β β β βββ SMPLH_NEUTRAL.npz
β β βββ X_pkl
β β βββ SMPLH_female.pkl
β β βββ SMPLH_male.pkl
β β βββ SMPLH_NEUTRAL.pkl
β βββ SMPLX
β βββ mod
β β βββ SMPLX_MALE_shape2019_exp2020.npz
β βββ X_npz
β βββ SMPLX_FEMALE.npz
β βββ SMPLX_MALE.npz
β βββ SMPLX_NEUTRAL.npz
βββ 5_S3FD
β βββ sfd_face.pth
βββ 6_SyncNet
β βββ syncnet_v2.model
βββ 7_SGHM
β βββ SGHM-ResNet50.pth
βββ 8_koniq
βββ koniq_pretrained.pkl
```
### Create New Model Repo
Update LFS files
```
git lfs track "*.gif"
git lfs track "*.jpg"
git lfs track "*.png"
# 4. δ½Ώη¨ git lfs migrate ε½δ»€θ½¬ζ’η°ζζδ»Ά
# θΏδΌε°ε·²η»ζδΊ€ηζ仢转ζ’δΈΊ LFS 对豑
git lfs migrate import --include="*.gif,*.jpg,*.png" --everything
# 5. εΌΊεΆζ¨ιζ΄ζ°εηεε²
git push --force origin main
```
Add new repo
```
git add .
git commit -m "init"
git push
``` |