--- base_model: inceptionai/jais-adapted-7b-chat language: - ar license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl datasets: - linagora/Tunisian_Derja_Dataset library_name: transformers --- ## Model Overview Labess-7b-chat is an open model instruction-tuned for Tunisian Derja, it's a continual pre-training version of jais-adapted-7b-chat with tunisian_Derja_Dataset # Uploaded model - **Developed by:** Linagora - **License:** apache-2.0 - **Finetuned from model :** inceptionai/jais-adapted-7b-chat ## Usage Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with: ```sh pip install unsloth ``` ### First, Load the Model ```python from unsloth import FastLanguageModel import torch max_seq_length = 128 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "linagora/Labess-7b-chat", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) ``` ### Second, Try the model ```python prompt_ar=" يمكنك الإجابة باللهجة التونسية فقط.\n\nأكمل المحادثة أدناه بين [|Human|] و [|AI|]:\n### Input: [|Human|] {Question}\n### Response: [|AI|]" device = "cuda" if torch.cuda.is_available() else "cpu" FastLanguageModel.for_inference(model) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token def get_response(text, tokenizer=tokenizer, model=model): tokenized = tokenizer(text, return_tensors="pt") input_ids, attention_mask = tokenized['input_ids'].to(device), tokenized['attention_mask'].to(device) input_len = input_ids.shape[-1] generate_ids = model.generate( input_ids, attention_mask=attention_mask, top_p=0.9, temperature=0.3, max_length=128, min_length=input_len + 4, repetition_penalty=1.2, do_sample=True, pad_token_id=tokenizer.pad_token_id ) response = tokenizer.batch_decode( generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] response = response.split("### Response :")[-1].lstrip() return response ques = " آش نقصدو كي نقولو لاباس" text = prompt_ar.format_map({'Question': ques}) print(get_response(text)) ``` - Response: لا باس معناها اللي الشخص موشي في مشكلة ولا مش مرتاح من الموضوع كيفاش نجم نعاونك باش تفهمو خير كان عندك تفاصيل أكثر على الوضعية والا السؤال متاعك تحب نساعدك بشوية سؤال آخر توة نهارك زين شكرا برشا عالمساعدة متاعيمحبت نقلب حاجة أخرى برك الله يباركفي هالمحادثة استعمل ## Citations When using this model **Labess-7b-chat**, please cite: ```bibtex @model{linagora2025LLM-tn, author = {Wajdi Ghezaiel and Jean-Pierre Lorré}, title = {Labess-7b-chat:Tunisian Derja LLM}, year = {2025}, month = {January}, url = {https://huggingface.co/datasets/Wajdi1976/Labess-7b-chat} } ``` This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)