--- license: apache-2.0 datasets: - graelo/wikipedia - uonlp/CulturaX - HuggingFaceH4/ultrachat_200k language: - ja - en ---

drawing

# How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-7B") model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-7B", torch_dtype=torch.bfloat16, device_map="auto") pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}] messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"}) prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False) ``` # Base checkpoint augmxnt/shisa-7b-v1 * Mistral-7B base * Pre-trained on 8B of MADLAD-Ja * Finetuned on Japanese instructions * Highest scoring 7B model on conversation benchmark (JA MT-Bench) # Training datasets (total ~7B) * Aozora Bunko * Japanese Law Precedent Dataset * Japanese Wikipedia * .lg.jp, .go.jp, .ac.jp domain webscrapes from CulturaX (Any documents with same first 25 characters were de-duplicated) * English Ultrachat200K-gen (So that it doesn't forget English and chatting ability learned in the base checkpoint) # Developed by Lightblue technology logo ### Engineers Peter Devine Sho Higuchi ### Advisors Yuuki Yamanaka Atom Sonoda ### Dataset evaluator Renju Aoki