import os import json import torch from transformers import DonutProcessor, AutoTokenizer import argparse from transformers import VisionEncoderDecoderModel, EncoderDecoderModel, EncoderDecoderConfig, BertConfig from my_model import MyModel, MyDataset from transformers import GenerationConfig from PIL import Image def inference(args): device = 'cuda' if torch.cuda.is_available() else 'cpu' processor = DonutProcessor.from_pretrained(args.donut_dir) processor.image_processor.size = {'height': 896, 'width': 672} processor.image_processor.image_mean = [0.485, 0.456, 0.406] processor.image_processor.image_std = [0.229, 0.224, 0.225] tokenizer = AutoTokenizer.from_pretrained(os.path.join(args.base_dir, 'zh_tokenizer')) encoder_config = BertConfig() decoder_config = BertConfig() encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config) encoder_decoder_config.decoder.bos_token_id = tokenizer.bos_token_id encoder_decoder_config.decoder.decoder_start_token_id = tokenizer.bos_token_id encoder_decoder_config.decoder.eos_token_id = tokenizer.eos_token_id encoder_decoder_config.decoder.hidden_size = 512 encoder_decoder_config.decoder.intermediate_size = 2048 encoder_decoder_config.decoder.max_length = args.max_length encoder_decoder_config.decoder.max_position_embeddings = args.max_length encoder_decoder_config.decoder.num_attention_heads = 8 encoder_decoder_config.decoder.num_hidden_layers = 6 encoder_decoder_config.decoder.pad_token_id = tokenizer.pad_token_id encoder_decoder_config.decoder.type_vocab_size = 1 encoder_decoder_config.decoder.vocab_size = tokenizer.vocab_size trans_model = EncoderDecoderModel(config=encoder_decoder_config) nougat_model = VisionEncoderDecoderModel.from_pretrained(args.nougat_dir) model = MyModel(nougat_model.config, trans_model, nougat_model) checkpoint_file_path = os.path.join(args.checkpoint_dir, 'pytorch_model.bin') checkpoint = torch.load(checkpoint_file_path, map_location='cpu') model.load_state_dict(checkpoint) model.eval() model.to(device) generation_config = GenerationConfig( max_length=args.max_length, early_stopping=True, num_beams=args.num_beams, use_cache=True, length_penalty=1.0, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) image = Image.open(args.image_file_path) if image.mode != 'RGB': image = image.convert('RGB') pixel_values = processor(image, return_tensors="pt").pixel_values.to(device) generation_ids = model.generate( pixel_values=pixel_values, generation_config=generation_config, ) zh_text = tokenizer.decode(generation_ids[0]) result_dir = os.path.join(args.base_dir, 'outputs') os.makedirs(result_dir, exist_ok=True) result_file_path = os.path.join(result_dir, args.image_file_path.split('/')[-1][:-4]+'.txt') with open(result_file_path, 'w', encoding='utf-8') as f: f.write(zh_text) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--base_dir", type=str) parser.add_argument("--donut_dir", type=str) parser.add_argument("--nougat_dir", type=str) parser.add_argument("--checkpoint_dir", type=str) parser.add_argument("--image_file_path", type=str) parser.add_argument("--max_length", type=int, default=1536) parser.add_argument("--num_beams", type=int, default=4) args = parser.parse_args() inference(args)